Optimized extreme learning machine for urban land cover classification using hyperspectral imagery

This work presents a new urban land cover classification framework using the firefly algorithm (FA) optimized extreme learning machine (ELM). FA is adopted to optimize the regularization coefficient C and Ganssian kernel σ for kernel ELM. Additionally, effectiveness of spectral features derived from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:结构与土木工程前沿:英文版 2017, Vol.11 (4), p.765-773
Hauptverfasser: Hongjun SU, Shufang TIAN, Yue CAI, Yehua SHENG, Chen CHEN, Maryam NAJAFIAN
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work presents a new urban land cover classification framework using the firefly algorithm (FA) optimized extreme learning machine (ELM). FA is adopted to optimize the regularization coefficient C and Ganssian kernel σ for kernel ELM. Additionally, effectiveness of spectral features derived from an FA-based band selection algorithm is studied for the proposed classification task. Three sets of hyperspectral databases were recorded using different sensors, namely HYDICE, HyMap, and AVIRIS. Our study shows that the proposed method outperforms traditional classification algorithms such as SVM and reduces computational cost significantly.
ISSN:2095-2430
2095-2449