A CANONICAL CONSTRUCTION OF H^m-NONCONFORMING TRIANGULAR FINITE ELEMENTS

We design a family of 2D Hm-nonconforming finite elements using the full P2m-3 degree polynomial space, for solving 2ruth elliptic partial differential equations. The consistent error is estimated and the optimal order of conver- gence is proved. Numerical tests on the new elements for solving tri-h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:应用数学年刊:英文版 2017, Vol.33 (3), p.266-288
Hauptverfasser: Jun Hu, Shangyou Zhang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We design a family of 2D Hm-nonconforming finite elements using the full P2m-3 degree polynomial space, for solving 2ruth elliptic partial differential equations. The consistent error is estimated and the optimal order of conver- gence is proved. Numerical tests on the new elements for solving tri-harmonic, 4-harmonic, 5-harmonic and 6-harmonic equations are presented, to verify the theory.
ISSN:2096-0174