A CANONICAL CONSTRUCTION OF H^m-NONCONFORMING TRIANGULAR FINITE ELEMENTS
We design a family of 2D Hm-nonconforming finite elements using the full P2m-3 degree polynomial space, for solving 2ruth elliptic partial differential equations. The consistent error is estimated and the optimal order of conver- gence is proved. Numerical tests on the new elements for solving tri-h...
Gespeichert in:
Veröffentlicht in: | 应用数学年刊:英文版 2017, Vol.33 (3), p.266-288 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We design a family of 2D Hm-nonconforming finite elements using the full P2m-3 degree polynomial space, for solving 2ruth elliptic partial differential equations. The consistent error is estimated and the optimal order of conver- gence is proved. Numerical tests on the new elements for solving tri-harmonic, 4-harmonic, 5-harmonic and 6-harmonic equations are presented, to verify the theory. |
---|---|
ISSN: | 2096-0174 |