Multidimensional Time Model for Probability CumulativeFunction and Connections Between DeterministicComputations and Probabilities

Multidimensional Time Model for Probability Cumulative Function can be reduced to finite-dimensional time model,which can be characterized by Boolean algebra for operations over events and their probabilities and index set for reduction ofinfinite dimensional time model to finite number of dimension...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:数学和系统科学:英文版 2017, Vol.7 (4), p.101-109
1. Verfasser: Michael Fundator
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multidimensional Time Model for Probability Cumulative Function can be reduced to finite-dimensional time model,which can be characterized by Boolean algebra for operations over events and their probabilities and index set for reduction ofinfinite dimensional time model to finite number of dimensions of time model considering also the fractal-dimensional time arisingfrom alike supersymmetrical properties of probability. This can lead to various applications for parameter evaluation and riskreduction in such big complex data structures as complex dependence structures, images, networks, and graphs, missing and sparsedata, such as to computer vision, biology, medicine, and various DNA analyses.
ISSN:2159-5291
2159-5305