An E3 ubiquitin ligase from Brassica napus induces a typical heat-shock response in its own way in Escherichia coil

Previously, we have identified a novel E3 ubiquitin ligase, BNTR1, which plays a key role in heat stress response in Brassica napus. In this study, we accidentally found that BNTR1 can also improve thermal tolerance and reduce growth inhibition at 42℃ in Escherichia coli, in a manner different from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:生物化学与生物物理学报:英文版 2017, Vol.49 (3), p.262-269
1. Verfasser: Fei Huang Yulong Niu Zhibin Liu Weifeng Liu Xufeng Li Hong Tan Yi Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previously, we have identified a novel E3 ubiquitin ligase, BNTR1, which plays a key role in heat stress response in Brassica napus. In this study, we accidentally found that BNTR1 can also improve thermal tolerance and reduce growth inhibition at 42℃ in Escherichia coli, in a manner different from that in plant. We show that BNTR1 activates E. coil heat-shock response at low concentration in soluble form instead of in inclusion body, but BNTR1 is not functioning as a heat- shock protein (HSP) because deficient temperature-sensitive mutants of HSP genes display un- conspicuous thermal tolerance in the presence of BNTRI. Our further studies show that BNTR1 triggers heat-shock response by competing with σ32 (σ32, heat-shock transcription factor) to its binding proteins DnaJ (HSP40) and DnaK (HSP70), which results in the release and accumulation of σ32, thereby promoting the heat-shock response, even under the non-heat-shock conditions. At 37℃, accumulation of the HSPs induced by BNTR1 could make cells much more tolerant than those without BNTR1 at 42℃. Thus, our results suggest that BNTR1 may potentially be a promis- ing target in fermentation industry for reducing impact from temperature fluctuation, where E. coli works as bioreactors.
ISSN:1672-9145
1745-7270