Self-supported ternary Co0.5Mn0.5P/carbon cloth (CC) as a high-performance hydrogen evolution electrocatalyst

Scalable production of earth-abundant, easy-to-prepare, and cost-effective electrocatalysts for the hydrogen evolution reaction (HER) is essential for sustainable energy-based systems. Herein, we systematically studied the electrocatalytic HER performance of a self-supported ternary Co0.5Mn0.5P/carb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:纳米研究:英文版 2017, Vol.10 (3), p.1001-1009
1. Verfasser: Xiaoyan Zhang Wenling Gu Erkang Wang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Scalable production of earth-abundant, easy-to-prepare, and cost-effective electrocatalysts for the hydrogen evolution reaction (HER) is essential for sustainable energy-based systems. Herein, we systematically studied the electrocatalytic HER performance of a self-supported ternary Co0.5Mn0.5P/carbon cloth (CC) nanomaterial prepared using a hydrothermal reaction and phosphorizafion process. Electrochemical tests demonstrated that the ternary Co0.5Mn0.5P/CC nanomaterial could be a highly active electrocatalyst in acidic media, with overpotentials of only 41 and 89 mV, affording current densities of 10 and 100 mA.cm-2, respectively, and a Tafel slope of 41.7 mV.dec-1. Furthermore, the electrocatalyst exhibited superior stability, with 3,000 cycles of cyclic voltammetry from -0.2 to 0.2 V at a scan rate of 100 mV.s-1 and 40 h of static polarization at a fixed overpotential of large-scale hydrogen production. 83 mV, indicating its potential for
ISSN:1998-0124
1998-0000