Expression and functional analysis of Fa PHO1;H9 gene of strawberry(Fragaria×ananassa)

Although the phosphate 1(PHO1)gene family has been implicated in inorganic phosphate transport and homeostasis,the underlying mechanism of this gene in the strawberry has not yet been revealed.In the present study,we analyzed the expression of the PHO1;H9 gene in the strawberry(Fragaria×ananassa),re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:农业科学学报:英文版 2017, Vol.16 (3), p.580-590
1. Verfasser: CAO Fei LI He WANG Shou-ming LI Xiao-ming DAI Hong-yan ZHANG Zhi-hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although the phosphate 1(PHO1)gene family has been implicated in inorganic phosphate transport and homeostasis,the underlying mechanism of this gene in the strawberry has not yet been revealed.In the present study,we analyzed the expression of the PHO1;H9 gene in the strawberry(Fragaria×ananassa),revealing the involvement of this gene in the regulation of phosphorus(P)content.The coding sequence(CDS)of the PHO1;H9 gene,was isolated from the cultivated strawberry‘Sachinoka’and named as Fa PHO1;H9.The full-length CDS of this gene was 2 292 bp,encoding 763 amino acids,and the protein contained both SYG1/Pho81/XPR1(SPX)and ERD1/XPR1/SYG1(EXS)domains,which were involved in phosphate(Pi)signaling.Real-time reverse transcription-polymerase chain reaction(RT-PCR)data suggested that the level of Fa PHO1;H9 expression was consistent with the P content in different organs,except for the petiole.Particularly,its expression level was also correlated with P content in fruits of different developmental stages.The expression of Fa PHO1;H9 was also consistent with P content in leaves under different concentrations of P fertilizer application.Furthermore,transgenic Arabidopsis lines were generated,and the P content in Arabidopsis plants over-expressing Fa PHO1;H9was significantly higher than that in wild-type plants.Therefore,we proposed that Fa PHO1;H9 functions in P transport.
ISSN:2095-3119
2352-3425