Wnt gene expression in adult porcine Iongissimus dorsi and its association with muscle fiber type, energy metabolism, and meat quality

This study investigated the expression profiles of Writ genes in adult porcine Iongissimus dorsi (LD) from different porcine genotypes and their associations with meat quality. The results showed that Wnt5a gene expression level was the highest in Jinhua (JHP) pigs, followed by Zhongbai (ZBP), Duroc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:农业科学学报:英文版 2017, Vol.16 (1), p.144-150
1. Verfasser: MEN Xiao-ming DENG Bo TAO Xin QI Ke-ke XU Zi-wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigated the expression profiles of Writ genes in adult porcine Iongissimus dorsi (LD) from different porcine genotypes and their associations with meat quality. The results showed that Wnt5a gene expression level was the highest in Jinhua (JHP) pigs, followed by Zhongbai (ZBP), DurocxZhongbai (DZB), and Duroc×Yorkshire×Landrace (DYL) pigs, with significant differences between ZBP, DZB, and DYL (P〈0.05). This genotypic order was reversed for Wnt7a, Wnt10b, and Wnt11 expression, with JHP and DYL having the lowest and highest expressive levels, respectively. Wnt5a expression was negatively correlated with pH,5 min and ApH (P〈0.01), some glycolytic markers (P〈0.05), and positively correlated with meat color (a*), shear force (SF) value (P〈0.05), myosion heavy chain (MyHC) I mRNA proportion (P〈0.01), turnover ratio of creatine phosphate (CP), and creatine kinase (CK) activity (P〈0.05). Opposite correlations were observed for Writ2, Wnt7a, Wnt10b, and Wnt11. These results revealed that Wnt5a, Wnt7a, Wnt10b, and Wnt11 gene expressions in adult porcine muscle contributed to differences between porcine genotypes and affected pork quality. Wnt5a gene expression could be beneficial for the formation of high quality pork by regulating muscle fiber types and postmortem energy metabolism.
ISSN:2095-3119
2352-3425