Preparation and Visible-Light Photocatalytic Activity of FeTPP-Cr-TiO2 Microspheres

Tetraphenyl-porphyrin iron (FeTPP) was chosen to sensitize Cr doped TiO2 (Cr-TiO2) nanoparticles, a novel multimodified photocatalyst FeTPP-Cr-TiO2 with excellent visible- light photocatalytic activity was successfully synthesized. The FeTPP-Cr-TiO2 microspheres were characterized by X-ray diffracti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of chemical physics 2016-12, Vol.29 (6), p.717-724
Hauptverfasser: Yao, Bing-hua, Peng, Chao, He, Yang-qing, Zhang, Wen, Yu, Yan, Zhang, Ting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tetraphenyl-porphyrin iron (FeTPP) was chosen to sensitize Cr doped TiO2 (Cr-TiO2) nanoparticles, a novel multimodified photocatalyst FeTPP-Cr-TiO2 with excellent visible- light photocatalytic activity was successfully synthesized. The FeTPP-Cr-TiO2 microspheres were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electronic microscopy, X-ray photoelectron spectroscopy, UV-Vis diffuse reflectance spectra and N2 adsorption-desorption isotherms. The photocatalytic activity of FeTPP-Cr-TiO2 was evaluated by degradations of methylene blue in aqueous solution under irradiation with Xe lamp (150 W). The results showed that the FeTPP-Cr-TiO2 multimodified photocatalyst was anatase phase with high specific surface area (74.7 m^2/g), and exhibited higher photocatalytic degradation efficiency than Cr-TiO2 and FeTPP-TiO2. The photocatalytic degradations of three quinolone antibiotics (lomefioxacin, norfioxacin, and ofioxacin) were further estimated for the feasibility of practical application of catalyst in wastewater treatment. It is desirable that photodegradation of antibiotics with FeTPP-Cr-TiO2 achieved pretty high degradation rates and all followed the pseudo first-order reaction model, and the rate constants k of 3.02×10^-2, 2.81×10^-2, and 3.86×10^-2 min-1 and the half-lifes t1/2 of 22.9, 24.6, and 17.9 min were achieved respectively.
ISSN:1674-0068
2327-2244
DOI:10.1063/1674-0068/29/cjcp1605117