Quantum Phase Transition and Local Entanglement in Extended Hubbard Model on Anisotropic Triangular Lattices

Using a mean-field theory based upon Hartree-Fock approximation, we theoretically investigate the competition between the metallic conductivity, spin order and charge order phases in a two-dimensional half-filled extended Hubbard model on anisotropic triangular lattice. Bond order, double occupancy,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:理论物理通讯:英文版 2016, Vol.65 (11), p.555-562
1. Verfasser: 高吉明 唐荣安 张正梅 薛具奎
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using a mean-field theory based upon Hartree-Fock approximation, we theoretically investigate the competition between the metallic conductivity, spin order and charge order phases in a two-dimensional half-filled extended Hubbard model on anisotropic triangular lattice. Bond order, double occupancy, spin and charge structure factor are calculated, and the phase diagram of the extended Hubbard model is presented. It is found that the interplay of strong interaction and geometric frustration leads to exotic phases, the charge fluctuation is enhanced and three kinds of charge orders appear with the introduction of the nearest-neighbor interaction. Moreover, for different frustrations, it is also found that the antiferromagnetic insulating phase and nonmagnetic insulating phase are rapidly suppressed, and even- tually disappeared as the ratio between the nearest-neighbor interaction and on-site interaction increases. This indicates that spin order is also sensitive to the nearest-neighbor interaction. Finally, the single-site entanglement is calculated and it is found that a clear discontinuous of the single-site entanglement appears at the critical points of the phase transition.
ISSN:0253-6102