双集合卡尔曼滤波LAI同化结合BEPS模型的竹林生态系统碳通量模拟
叶面积指数(LAI)是森林生态系统碳循环研究的重要观测数据,也是驱动森林生态系统模型模拟碳循环的重要参数.本文以毛竹林和雷竹林为研究对象,首先利用双集合卡尔曼滤波,同化两种竹林生态系统观测站点2014—2015年MODIS LAI时间序列数据,然后将同化的高质量毛竹LAI和雷竹LAI作为输入数据驱动BEPS模型,模拟两种竹林生态系统总初级生产力(GPP)、净生态系统碳交换量(NEE)和总生态系统呼吸(TER)等碳循环数据,并用通量站实际观测值评价模拟结果;另外,还对比不同质量LAI对碳循环模拟的影响.结果表明: 双集合卡尔曼滤波同化得到的毛竹林和雷竹林LAI与实测LAI之间的相关关系极为显著,...
Gespeichert in:
Veröffentlicht in: | 应用生态学报 2016, Vol.27 (12), p.3797-3806 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 叶面积指数(LAI)是森林生态系统碳循环研究的重要观测数据,也是驱动森林生态系统模型模拟碳循环的重要参数.本文以毛竹林和雷竹林为研究对象,首先利用双集合卡尔曼滤波,同化两种竹林生态系统观测站点2014—2015年MODIS LAI时间序列数据,然后将同化的高质量毛竹LAI和雷竹LAI作为输入数据驱动BEPS模型,模拟两种竹林生态系统总初级生产力(GPP)、净生态系统碳交换量(NEE)和总生态系统呼吸(TER)等碳循环数据,并用通量站实际观测值评价模拟结果;另外,还对比不同质量LAI对碳循环模拟的影响.结果表明: 双集合卡尔曼滤波同化得到的毛竹林和雷竹林LAI与实测LAI之间的相关关系极为显著,R^2分别为0.81和0.91,且均方根误差和绝对偏差均较小,极大地提高了MODIS LAI的产品精度;在同化得到的LAI驱动下,BEPS模型模拟的毛竹林GPP、NEE和TER与实际观测值之间的R^2分别为0.66、0.47和0.64,雷竹林分别为0.66、0.45和0.73,模拟结果均好于三次样条帽盖算法平滑LAI模拟得到的GPP、NEE和TER,其中,毛竹林、雷竹林NEE的模拟精度提高幅度最大,分别为11.2%和11.8%. |
---|---|
ISSN: | 1001-9332 |