Genome of Plant Maca (Lepidium meyenil) Illuminates Genomic Basis for High-Altitude Adaptation in the Central Andes
Maca (Lepidium meyenii Walp, 2n = 8x = 64), belonging to the Brassicaceae family, is an economic plant cultivated in the central Andes sierra in Peru (4000-4500 m). Considering that the rapid uplift of the central Andes occurred 5-10 million years ago (Ma), an evolutionary question arises regarding...
Gespeichert in:
Veröffentlicht in: | 分子植物:英文版 2016 (7), p.1066-1077 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Maca (Lepidium meyenii Walp, 2n = 8x = 64), belonging to the Brassicaceae family, is an economic plant cultivated in the central Andes sierra in Peru (4000-4500 m). Considering that the rapid uplift of the central Andes occurred 5-10 million years ago (Ma), an evolutionary question arises regarding how plants such as maca acquire high-altitude adaptation within a short geological period. Here, we report the high-quality genome assembly of maca, in which two closely spaced maca-specific whole-genome duplications (WGDs; ~6.7 Ma) were identified. Comparative genomic analysis between maca and closely related Brassicaceae species revealed expansions of maca genes and gene families involved in abiotic stress response, hormone signaling pathway, and secondary metabolite biosynthesis via WGDs. The retention and subsequent functional divergence of many duplicated genes may account for the morphological and physiological changes (i.e., small leaf shape and self-fertility) in maca in a high-altitude environment. In addition, some duplicated maca genes were identified with functions in morphological adaptation (i.e., LEAF CURLING RESPONSIVENESS) and abiotic stress response (i.e., GL YClNE-RICH RNA-BINDING PROTEINS and DNA-DAMAGE-REPAIR/TOLERATION2) under positive selection. Collectively, the maca genome provides use- ful information to understand the important roles of WGDs in the high-altitude adaptation of plants in the Andes. |
---|---|
ISSN: | 1674-2052 1752-9867 |