The effect of Scuteilaria baicalensis stem-leaf flavonoids on spatial learning and memory in chronic cerebral ischemia-induced vascular dementia of rats

Flavonoids have been shown to improve cognitive function and delay the dementia progression. However, the underlying mechanisms remain elusive. In the present study, we examined the effect of Scutellaria baicalensis stem-leaf total flavonoids (SSTFs) extracted from S. baicalensis Georgi on spatial l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:生物化学与生物物理学报:英文版 2016 (5), p.437-446
1. Verfasser: Yanjing Cao Lizhen Liang Jian Xu Jiali Wu Yongxing Yan Ping Lin Qiang Chen Fengming Zheng Qin Wang Qian Ren Zengmei Gou Yifeng Du
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Flavonoids have been shown to improve cognitive function and delay the dementia progression. However, the underlying mechanisms remain elusive. In the present study, we examined the effect of Scutellaria baicalensis stem-leaf total flavonoids (SSTFs) extracted from S. baicalensis Georgi on spatial learning and memory in a vascular dementia (VaD) rat model and explored its molecular mechanisms. The VaD rats were developed by permanent bilateral occlusion of the common carotid artery. Seven days after recovery, the VaD rats were treated with either 50 or 100 mg/kg of SSTF for 60 days. The spatial learning and memory was evaluated in the Morris water maze (MWM) test. The tau hyperphosphorylation and the levels of the related protein kinases or phosphatases were examined by western blot analysis. In VaD rats, SSTF treatment at 100 mg/kg significantly reduced the escape latency in training trial in MWM test. In the probe trial, SSTF treatment increased the searching time and travel distance in the target quadrant. SSTF treatment inhibited the tau phosphorylation in both cortex and hippocampus in VaD rats. Meanwhile, SSTF reduced the activity of glycogen synthase kinase 3β and cyclin-dependent kinase 5 in VaD rats. In contrast, SSTF treatment increased the level of the protein phosphatase 2A subunit B in VaD rats. SSTF treatment significantly improved the spatial cognition in VaD rats. Our results suggest that SSTF may alleviate tauhyperphosphorylation-induced neurotoxicity through coordinating the activity of kinases and phosphatase after a stroke. SSTF may be developed into promising novel therapeutics for VaD.
ISSN:1672-9145
1745-7270