Equivalent Characterization of Centralizers on B(H)
Let H be a Hilbert space with dimH ≥2 and Z ∈ B(H) be an arbitrary but fixed operator. In this paper we show that an additive map (I) : B(H)→ B(H) satisfies Ф(AB) = Ф(A)B = AФ(B) for any A, B ∈ B(H) with AB = Z if and only if Ф(AB) = Ф(A)B = AФ(B), A, B ∈ B(H), that is, (I) is a centralizer. Similar...
Gespeichert in:
Veröffentlicht in: | 数学学报:英文版 2016 (9), p.1113-1120 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1120 |
---|---|
container_issue | 9 |
container_start_page | 1113 |
container_title | 数学学报:英文版 |
container_volume | |
creator | Wen Si XU Run Ling AN Jin Chuan HOU |
description | Let H be a Hilbert space with dimH ≥2 and Z ∈ B(H) be an arbitrary but fixed operator. In this paper we show that an additive map (I) : B(H)→ B(H) satisfies Ф(AB) = Ф(A)B = AФ(B) for any A, B ∈ B(H) with AB = Z if and only if Ф(AB) = Ф(A)B = AФ(B), A, B ∈ B(H), that is, (I) is a centralizer. Similar results are obtained for Hilbert space nest algebras. In addition, we show that Ф(A2) = AФ(A) = Ф(A)A for any A ∈ B(H) with A2 = 0 if and only if Ф(A) = AФ(I) = Ф(I)A, A ∈ B(H), and generalize main results in Linear Algebra and its Application, 450, 243-249 (2014) to infinite dimensional case. New equivalent characterization of centralizers on B(H) is obtained. |
format | Article |
fullrecord | <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_primary_669665709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>669665709</cqvip_id><sourcerecordid>669665709</sourcerecordid><originalsourceid>FETCH-chongqing_primary_6696657093</originalsourceid><addsrcrecordid>eNpjYuA0NDG21DU3MzRngbItTA3NOBi4iouzDAxMTS0NzDgZzF0LSzPLEnNS80oUnDMSixKTS1KLMqsSSzLz8xTy0xScgRJFiTmZValFxQpAIaf3ezo83u_p5GFgTUvMKU7lhdLcDEpuriHOHrrJGfl56YWZeenxBUWZuYlFlfFmZpZmZqbmBpbGRCkCAGayOJ4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Equivalent Characterization of Centralizers on B(H)</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wen Si XU Run Ling AN Jin Chuan HOU</creator><creatorcontrib>Wen Si XU Run Ling AN Jin Chuan HOU</creatorcontrib><description>Let H be a Hilbert space with dimH ≥2 and Z ∈ B(H) be an arbitrary but fixed operator. In this paper we show that an additive map (I) : B(H)→ B(H) satisfies Ф(AB) = Ф(A)B = AФ(B) for any A, B ∈ B(H) with AB = Z if and only if Ф(AB) = Ф(A)B = AФ(B), A, B ∈ B(H), that is, (I) is a centralizer. Similar results are obtained for Hilbert space nest algebras. In addition, we show that Ф(A2) = AФ(A) = Ф(A)A for any A ∈ B(H) with A2 = 0 if and only if Ф(A) = AФ(I) = Ф(I)A, A ∈ B(H), and generalize main results in Linear Algebra and its Application, 450, 243-249 (2014) to infinite dimensional case. New equivalent characterization of centralizers on B(H) is obtained.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><language>eng</language><subject>dim ; 希尔伯特空间 ; 扶正器 ; 无限维 ; 添加剂 ; 等价刻画 ; 线性代数 ; 运营商</subject><ispartof>数学学报:英文版, 2016 (9), p.1113-1120</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85800X/85800X.jpg</thumbnail><link.rule.ids>314,780,784,4014</link.rule.ids></links><search><creatorcontrib>Wen Si XU Run Ling AN Jin Chuan HOU</creatorcontrib><title>Equivalent Characterization of Centralizers on B(H)</title><title>数学学报:英文版</title><addtitle>Acta Mathematica Sinica</addtitle><description>Let H be a Hilbert space with dimH ≥2 and Z ∈ B(H) be an arbitrary but fixed operator. In this paper we show that an additive map (I) : B(H)→ B(H) satisfies Ф(AB) = Ф(A)B = AФ(B) for any A, B ∈ B(H) with AB = Z if and only if Ф(AB) = Ф(A)B = AФ(B), A, B ∈ B(H), that is, (I) is a centralizer. Similar results are obtained for Hilbert space nest algebras. In addition, we show that Ф(A2) = AФ(A) = Ф(A)A for any A ∈ B(H) with A2 = 0 if and only if Ф(A) = AФ(I) = Ф(I)A, A ∈ B(H), and generalize main results in Linear Algebra and its Application, 450, 243-249 (2014) to infinite dimensional case. New equivalent characterization of centralizers on B(H) is obtained.</description><subject>dim</subject><subject>希尔伯特空间</subject><subject>扶正器</subject><subject>无限维</subject><subject>添加剂</subject><subject>等价刻画</subject><subject>线性代数</subject><subject>运营商</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpjYuA0NDG21DU3MzRngbItTA3NOBi4iouzDAxMTS0NzDgZzF0LSzPLEnNS80oUnDMSixKTS1KLMqsSSzLz8xTy0xScgRJFiTmZValFxQpAIaf3ezo83u_p5GFgTUvMKU7lhdLcDEpuriHOHrrJGfl56YWZeenxBUWZuYlFlfFmZpZmZqbmBpbGRCkCAGayOJ4</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Wen Si XU Run Ling AN Jin Chuan HOU</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope></search><sort><creationdate>2016</creationdate><title>Equivalent Characterization of Centralizers on B(H)</title><author>Wen Si XU Run Ling AN Jin Chuan HOU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_primary_6696657093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>dim</topic><topic>希尔伯特空间</topic><topic>扶正器</topic><topic>无限维</topic><topic>添加剂</topic><topic>等价刻画</topic><topic>线性代数</topic><topic>运营商</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen Si XU Run Ling AN Jin Chuan HOU</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>数学学报:英文版</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen Si XU Run Ling AN Jin Chuan HOU</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equivalent Characterization of Centralizers on B(H)</atitle><jtitle>数学学报:英文版</jtitle><addtitle>Acta Mathematica Sinica</addtitle><date>2016</date><risdate>2016</risdate><issue>9</issue><spage>1113</spage><epage>1120</epage><pages>1113-1120</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>Let H be a Hilbert space with dimH ≥2 and Z ∈ B(H) be an arbitrary but fixed operator. In this paper we show that an additive map (I) : B(H)→ B(H) satisfies Ф(AB) = Ф(A)B = AФ(B) for any A, B ∈ B(H) with AB = Z if and only if Ф(AB) = Ф(A)B = AФ(B), A, B ∈ B(H), that is, (I) is a centralizer. Similar results are obtained for Hilbert space nest algebras. In addition, we show that Ф(A2) = AФ(A) = Ф(A)A for any A ∈ B(H) with A2 = 0 if and only if Ф(A) = AФ(I) = Ф(I)A, A ∈ B(H), and generalize main results in Linear Algebra and its Application, 450, 243-249 (2014) to infinite dimensional case. New equivalent characterization of centralizers on B(H) is obtained.</abstract></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-8516 |
ispartof | 数学学报:英文版, 2016 (9), p.1113-1120 |
issn | 1439-8516 1439-7617 |
language | eng |
recordid | cdi_chongqing_primary_669665709 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | dim 希尔伯特空间 扶正器 无限维 添加剂 等价刻画 线性代数 运营商 |
title | Equivalent Characterization of Centralizers on B(H) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A41%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equivalent%20Characterization%20of%20Centralizers%20on%20B%EF%BC%88H%EF%BC%89&rft.jtitle=%E6%95%B0%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Wen%20Si%20XU%20Run%20Ling%20AN%20Jin%20Chuan%20HOU&rft.date=2016&rft.issue=9&rft.spage=1113&rft.epage=1120&rft.pages=1113-1120&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/&rft_dat=%3Cchongqing%3E669665709%3C/chongqing%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=669665709&rfr_iscdi=true |