Equivalent Characterization of Centralizers on B(H)

Let H be a Hilbert space with dimH ≥2 and Z ∈ B(H) be an arbitrary but fixed operator. In this paper we show that an additive map (I) : B(H)→ B(H) satisfies Ф(AB) = Ф(A)B = AФ(B) for any A, B ∈ B(H) with AB = Z if and only if Ф(AB) = Ф(A)B = AФ(B), A, B ∈ B(H), that is, (I) is a centralizer. Similar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:数学学报:英文版 2016 (9), p.1113-1120
1. Verfasser: Wen Si XU Run Ling AN Jin Chuan HOU
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let H be a Hilbert space with dimH ≥2 and Z ∈ B(H) be an arbitrary but fixed operator. In this paper we show that an additive map (I) : B(H)→ B(H) satisfies Ф(AB) = Ф(A)B = AФ(B) for any A, B ∈ B(H) with AB = Z if and only if Ф(AB) = Ф(A)B = AФ(B), A, B ∈ B(H), that is, (I) is a centralizer. Similar results are obtained for Hilbert space nest algebras. In addition, we show that Ф(A2) = AФ(A) = Ф(A)A for any A ∈ B(H) with A2 = 0 if and only if Ф(A) = AФ(I) = Ф(I)A, A ∈ B(H), and generalize main results in Linear Algebra and its Application, 450, 243-249 (2014) to infinite dimensional case. New equivalent characterization of centralizers on B(H) is obtained.
ISSN:1439-8516
1439-7617