A public Cloud-based China's Landslide Inventory Database(Cs LID): development, zone, and spatiotemporal analysis for significant historical events, 1949-2011

Landslide inventory plays an important role in recording landslide events and showing their temporal-spatial distribution. This paper describes the development, visualization, and analysis of a China's Landslide Inventory Database(Cs LID) by utilizing Google's public cloud computing platform. Firstl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:山地科学学报:英文版 2016, Vol.13 (7), p.1275-1285
1. Verfasser: LI Wei-yue LIU Chun HONG Yang ZHANG Xin-hua WAN Zhan-ming Manabendra SAHARIA SUN Wei-wei YAO Dong-jing CHEN Wen CHEN Sheng YANG Xiu-qin YUE Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Landslide inventory plays an important role in recording landslide events and showing their temporal-spatial distribution. This paper describes the development, visualization, and analysis of a China's Landslide Inventory Database(Cs LID) by utilizing Google's public cloud computing platform. Firstly, Cs LID(Landslide Inventory Database) compiles a total of 1221 historical landslide events spanning the years 1949-2011 from relevant data sources. Secondly, the Cs LID is further broken down into six zones for characterizing landslide cause-effect, spatiotemporal distribution, fatalities, and socioeconomic impacts based on the geological environment and terrain. The results show that among all the six zones, zone V, located in Qinba and Southwest Mountainous Area is the most active landslide hotspot with the highest landslide hazard in China. Additionally, the Google public cloud computing platform enables the Cs LID to be easily accessible, visually interactive, and with the capability of allowing new data input to dynamically augment the database. This work developed a cyber-landslide inventory and used it to analyze the landslide temporal-spatial distribution in China.
ISSN:1672-6316
1993-0321