Preparation and Electrochemical Application of Praseodymium Modified TiO2-NTs/SnOe-Sb Anode by Cyclic Voltammetry Method

A Pr-doped TiO2-NTs/SnO2-Sb electrode was prepared by a simple method, cyclic voltarnmetry (CV). The methyl orange (MO)aqueous solution was selected as a simulated wastewater. The ordered microstructural TiO2-NTs substrate was synthesized by an electrochemical method to obtain large specific surface...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:天津大学学报:英文版 2016, Vol.22 (3), p.247-253
1. Verfasser: 王燕 陈迓宾 朱怀工 张旭斌
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A Pr-doped TiO2-NTs/SnO2-Sb electrode was prepared by a simple method, cyclic voltarnmetry (CV). The methyl orange (MO)aqueous solution was selected as a simulated wastewater. The ordered microstructural TiO2-NTs substrate was synthesized by an electrochemical method to obtain large specific surface area and high space utilization. The phase structure, electrode surface morphology and electrochemical properties of electrodes were characterized by XRD, SEM and electrochemical technology, respectively. The results showed that praseo- dymium oxide was successfully doped into the SnOz-Sb film by CV method. Due to the doped Pr, the oxygen evo- lution potential increased from 2.25 V to 2.40 V. The degradation of MO was investigated by UV-vis. The Ct/C0(φ) was studied as a function to obtain the optimal parameters, such as the amount of doped Pr, current density and initial dye concentration. In addition, the degradation process followed pseudo-first-order reaction kinetics and the rate constant was 0.099 3 min-1. The result indicated that the introduction of Pr reduced the formation of oxygen vacancies or enhanced the formation of adsorbed hydroxyl radical groups on the surface, thus leading to better activity and stability.
ISSN:1006-4982
1995-8196