Remarkable anodic performance of lead titanate 1D nanostructures via in-situ irreversible formation of abundant Ti^3+ as conduction pathways
PX-phase PbTiO3 (PT) nanowires with open channels running along the length direction have been investigated as an anode material for lithium ion batteries. This material shows a stabilized reversible specific capacity of about 410 mAh·g^-1 up to 200 cycles with a charge/discharge voltage plateau of...
Gespeichert in:
Veröffentlicht in: | 纳米研究:英文版 2016 (2), p.353-362 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | PX-phase PbTiO3 (PT) nanowires with open channels running along the length direction have been investigated as an anode material for lithium ion batteries. This material shows a stabilized reversible specific capacity of about 410 mAh·g^-1 up to 200 cycles with a charge/discharge voltage plateau of around 0.3-0.65 V. In addition, it exhibits superior high-rate performance, with 90% and 77% capacity retention observed at 1 and 2 A·g^-1, respectively. At a very high current rate of 10 A·g^-1, a specific capacity of over 170 mAh·g^-1 is retained up to 100 cycles, significantly outperforming the rate capability reported for Pb and Pb oxides. The results of X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analyses along with the cyclic voltammogram results reveal that the PX-phase PT nanowires undergo irreversible structural amorphization and reduction reactions during the initial cycle, which allow them to transform into a composite structure composed of 2-5 nm Pb nanoparticles uniformly dispersed in the 1D amorphous Li2O·TiO2·LiTiO2 matrix. In this composite structure, the presence of abundant amounts of Ti^3+ in both the charged and discharged states enhances the electrical conductance of the system, whereas the presence of ultrafine Pb nanoparticles imparts high reversible capacity. The structurally stable TiO2-based amorphous matrix can also considerably buffer the volume variation during the charge/discharge process, thereby facilitating extremely stable cycling performance. This compound combines the high specific capacity of Pb-based materials and the good rate capability of Ti^3+-based wiring. Our results might furnish a possible route for achieving superior cycling and rate performance and contribute towards the search for next-generation anode materials. |
---|---|
ISSN: | 1998-0124 1998-0000 |