Legendre Polynomials-Based Numerical Differentiation: A Convergence Analysis in a Weighted L^2 Space

We consider the problem of estimating the derivative of a function f from its noisy version fδby using the derivatives of the partial sums of Fourier-Legendre series of f~δ. Instead of the observation L~2 space, we perform the reconstruction of the derivative in a weighted L~2 space. This takes full...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:数学研究及应用:英文版 2016 (2), p.247-252
1. Verfasser: Qin FANG Haojie LI Min XU
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problem of estimating the derivative of a function f from its noisy version fδby using the derivatives of the partial sums of Fourier-Legendre series of f~δ. Instead of the observation L~2 space, we perform the reconstruction of the derivative in a weighted L~2 space. This takes full advantage of the properties of Legendre polynomials and results in a slight improvement on the convergence order. Finally, we provide several numerical examples to demonstrate the efficiency of the proposed method.
ISSN:2095-2651