Legendre Polynomials-Based Numerical Differentiation: A Convergence Analysis in a Weighted L^2 Space
We consider the problem of estimating the derivative of a function f from its noisy version fδby using the derivatives of the partial sums of Fourier-Legendre series of f~δ. Instead of the observation L~2 space, we perform the reconstruction of the derivative in a weighted L~2 space. This takes full...
Gespeichert in:
Veröffentlicht in: | 数学研究及应用:英文版 2016 (2), p.247-252 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the problem of estimating the derivative of a function f from its noisy version fδby using the derivatives of the partial sums of Fourier-Legendre series of f~δ. Instead of the observation L~2 space, we perform the reconstruction of the derivative in a weighted L~2 space. This takes full advantage of the properties of Legendre polynomials and results in a slight improvement on the convergence order. Finally, we provide several numerical examples to demonstrate the efficiency of the proposed method. |
---|---|
ISSN: | 2095-2651 |