Growth mechanism of atomic-layer-deposited TiAIC metal gate based on TiCI4 and TMA precursors
TiAIC metal gate for the metal-oxide-semiconductor field-effect-transistor (MOSFET) is grown by the atorr/ic layer deposition method using TiCI4 and AI(CH3) 3 (TMA) as precursors. It is found that the major PrOduct of the TIC14 and TMA reaction is TiA1C, and the components of C and A1 are found to i...
Gespeichert in:
Veröffentlicht in: | 中国物理B:英文版 2016 (3), p.371-374 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 374 |
---|---|
container_issue | 3 |
container_start_page | 371 |
container_title | 中国物理B:英文版 |
container_volume | |
creator | 项金娟 丁玉强 杜立永 李俊峰 王文武 赵超 |
description | TiAIC metal gate for the metal-oxide-semiconductor field-effect-transistor (MOSFET) is grown by the atorr/ic layer deposition method using TiCI4 and AI(CH3) 3 (TMA) as precursors. It is found that the major PrOduct of the TIC14 and TMA reaction is TiA1C, and the components of C and A1 are found to increase with higher growth temperature. The reaction mechanism is investigated by using x-ray photoemission spectroscopy (XPS), Fourier transform infrared spectroscopy (FFIR), and scanning electron microscope (SEM). The reaction mechanism is as follows. Ti is generated through the reduction of TiCI4 by TMA. The reductive behavior of TMA involves the formation of ethane. The Ti from the reduction of TIC14 by TMA reacts with ethane easily forming heterogenetic TiCH2, TiCH=CH2 and TiC fragments. In addition, TMA thermally decomposes, driving A1 into the TiC film and leading to TiA1C formation. With the growth temperature increasing, TMA decomposes more severely, resulting in more C and A1 in the TiA1C film. Thus, the film composition can be controlled by the growth temperature to a certain extent. |
format | Article |
fullrecord | <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_primary_667982262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>667982262</cqvip_id><sourcerecordid>667982262</sourcerecordid><originalsourceid>FETCH-chongqing_primary_6679822623</originalsourceid><addsrcrecordid>eNqNyrsOgjAYhuHGaCIe7qFxb1IKFBwJ8cDgxmrILxSogRbbGsPdy-AFOH3J-z0L5DEaJSRIgnCJPJ_HIfFpxNdoY-2TUu5TFnjofjH64zo8iKoDJe2AdYPB6UFWpIdJGFKLUVvpRI0LmebZLB30uAUn8APsnLWanywPMajZ3FI8GlG9jdXG7tCqgd6K_W-36HA-FdmVVJ1W7UuqthyNHMBMJefxMWGMs-Av9AXxLEL7</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Growth mechanism of atomic-layer-deposited TiAIC metal gate based on TiCI4 and TMA precursors</title><source>IOP Publishing Journals</source><creator>项金娟 丁玉强 杜立永 李俊峰 王文武 赵超</creator><creatorcontrib>项金娟 丁玉强 杜立永 李俊峰 王文武 赵超</creatorcontrib><description>TiAIC metal gate for the metal-oxide-semiconductor field-effect-transistor (MOSFET) is grown by the atorr/ic layer deposition method using TiCI4 and AI(CH3) 3 (TMA) as precursors. It is found that the major PrOduct of the TIC14 and TMA reaction is TiA1C, and the components of C and A1 are found to increase with higher growth temperature. The reaction mechanism is investigated by using x-ray photoemission spectroscopy (XPS), Fourier transform infrared spectroscopy (FFIR), and scanning electron microscope (SEM). The reaction mechanism is as follows. Ti is generated through the reduction of TiCI4 by TMA. The reductive behavior of TMA involves the formation of ethane. The Ti from the reduction of TIC14 by TMA reacts with ethane easily forming heterogenetic TiCH2, TiCH=CH2 and TiC fragments. In addition, TMA thermally decomposes, driving A1 into the TiC film and leading to TiA1C formation. With the growth temperature increasing, TMA decomposes more severely, resulting in more C and A1 in the TiA1C film. Thus, the film composition can be controlled by the growth temperature to a certain extent.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><language>eng</language><subject>TiCl4 ; TMA ; X射线光电子能谱 ; 傅里叶变换红外光谱 ; 原子层沉积 ; 生长机理 ; 金属栅极 ; 金属氧化物半导体场效应晶体管</subject><ispartof>中国物理B:英文版, 2016 (3), p.371-374</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><link.rule.ids>314,780,784,4022</link.rule.ids></links><search><creatorcontrib>项金娟 丁玉强 杜立永 李俊峰 王文武 赵超</creatorcontrib><title>Growth mechanism of atomic-layer-deposited TiAIC metal gate based on TiCI4 and TMA precursors</title><title>中国物理B:英文版</title><addtitle>Chinese Physics</addtitle><description>TiAIC metal gate for the metal-oxide-semiconductor field-effect-transistor (MOSFET) is grown by the atorr/ic layer deposition method using TiCI4 and AI(CH3) 3 (TMA) as precursors. It is found that the major PrOduct of the TIC14 and TMA reaction is TiA1C, and the components of C and A1 are found to increase with higher growth temperature. The reaction mechanism is investigated by using x-ray photoemission spectroscopy (XPS), Fourier transform infrared spectroscopy (FFIR), and scanning electron microscope (SEM). The reaction mechanism is as follows. Ti is generated through the reduction of TiCI4 by TMA. The reductive behavior of TMA involves the formation of ethane. The Ti from the reduction of TIC14 by TMA reacts with ethane easily forming heterogenetic TiCH2, TiCH=CH2 and TiC fragments. In addition, TMA thermally decomposes, driving A1 into the TiC film and leading to TiA1C formation. With the growth temperature increasing, TMA decomposes more severely, resulting in more C and A1 in the TiA1C film. Thus, the film composition can be controlled by the growth temperature to a certain extent.</description><subject>TiCl4</subject><subject>TMA</subject><subject>X射线光电子能谱</subject><subject>傅里叶变换红外光谱</subject><subject>原子层沉积</subject><subject>生长机理</subject><subject>金属栅极</subject><subject>金属氧化物半导体场效应晶体管</subject><issn>1674-1056</issn><issn>2058-3834</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNyrsOgjAYhuHGaCIe7qFxb1IKFBwJ8cDgxmrILxSogRbbGsPdy-AFOH3J-z0L5DEaJSRIgnCJPJ_HIfFpxNdoY-2TUu5TFnjofjH64zo8iKoDJe2AdYPB6UFWpIdJGFKLUVvpRI0LmebZLB30uAUn8APsnLWanywPMajZ3FI8GlG9jdXG7tCqgd6K_W-36HA-FdmVVJ1W7UuqthyNHMBMJefxMWGMs-Av9AXxLEL7</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>项金娟 丁玉强 杜立永 李俊峰 王文武 赵超</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope></search><sort><creationdate>2016</creationdate><title>Growth mechanism of atomic-layer-deposited TiAIC metal gate based on TiCI4 and TMA precursors</title><author>项金娟 丁玉强 杜立永 李俊峰 王文武 赵超</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_primary_6679822623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>TiCl4</topic><topic>TMA</topic><topic>X射线光电子能谱</topic><topic>傅里叶变换红外光谱</topic><topic>原子层沉积</topic><topic>生长机理</topic><topic>金属栅极</topic><topic>金属氧化物半导体场效应晶体管</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>项金娟 丁玉强 杜立永 李俊峰 王文武 赵超</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>中国物理B:英文版</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>项金娟 丁玉强 杜立永 李俊峰 王文武 赵超</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth mechanism of atomic-layer-deposited TiAIC metal gate based on TiCI4 and TMA precursors</atitle><jtitle>中国物理B:英文版</jtitle><addtitle>Chinese Physics</addtitle><date>2016</date><risdate>2016</risdate><issue>3</issue><spage>371</spage><epage>374</epage><pages>371-374</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><abstract>TiAIC metal gate for the metal-oxide-semiconductor field-effect-transistor (MOSFET) is grown by the atorr/ic layer deposition method using TiCI4 and AI(CH3) 3 (TMA) as precursors. It is found that the major PrOduct of the TIC14 and TMA reaction is TiA1C, and the components of C and A1 are found to increase with higher growth temperature. The reaction mechanism is investigated by using x-ray photoemission spectroscopy (XPS), Fourier transform infrared spectroscopy (FFIR), and scanning electron microscope (SEM). The reaction mechanism is as follows. Ti is generated through the reduction of TiCI4 by TMA. The reductive behavior of TMA involves the formation of ethane. The Ti from the reduction of TIC14 by TMA reacts with ethane easily forming heterogenetic TiCH2, TiCH=CH2 and TiC fragments. In addition, TMA thermally decomposes, driving A1 into the TiC film and leading to TiA1C formation. With the growth temperature increasing, TMA decomposes more severely, resulting in more C and A1 in the TiA1C film. Thus, the film composition can be controlled by the growth temperature to a certain extent.</abstract></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-1056 |
ispartof | 中国物理B:英文版, 2016 (3), p.371-374 |
issn | 1674-1056 2058-3834 |
language | eng |
recordid | cdi_chongqing_primary_667982262 |
source | IOP Publishing Journals |
subjects | TiCl4 TMA X射线光电子能谱 傅里叶变换红外光谱 原子层沉积 生长机理 金属栅极 金属氧化物半导体场效应晶体管 |
title | Growth mechanism of atomic-layer-deposited TiAIC metal gate based on TiCI4 and TMA precursors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A29%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20mechanism%20of%20atomic-layer-deposited%20TiAIC%20metal%20gate%20based%20on%20TiCI4%20and%20TMA%20precursors&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E9%A1%B9%E9%87%91%E5%A8%9F%20%E4%B8%81%E7%8E%89%E5%BC%BA%20%E6%9D%9C%E7%AB%8B%E6%B0%B8%20%E6%9D%8E%E4%BF%8A%E5%B3%B0%20%E7%8E%8B%E6%96%87%E6%AD%A6%20%E8%B5%B5%E8%B6%85&rft.date=2016&rft.issue=3&rft.spage=371&rft.epage=374&rft.pages=371-374&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/&rft_dat=%3Cchongqing%3E667982262%3C/chongqing%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=667982262&rfr_iscdi=true |