First principle study of LiXS_2(X=Ga, In) as cathode materials for Li ion batteries
From first principle calculations, we demonstrate that LiXS_2(X = Ga, In) compounds have potential applications as cathode materials for Li ion batteries. It is shown that Li can be extracted from the LiXS_2 lattice with relatively small volume change and the XS_4 tetrahedron structure framework rem...
Gespeichert in:
Veröffentlicht in: | 中国物理B:英文版 2016 (2), p.522-527 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | From first principle calculations, we demonstrate that LiXS_2(X = Ga, In) compounds have potential applications as cathode materials for Li ion batteries. It is shown that Li can be extracted from the LiXS_2 lattice with relatively small volume change and the XS_4 tetrahedron structure framework remains stable upon delithiation. The theoretical capacity and average intercalation potential of the LiGaS_2(LiInS_2) cathode are 190.4(144._2) m Ah/g and 3.50 V(3.53 V). The electronic structures of the LiXS_2 are insulating with band gaps of _2.88 eV and 1.99 eV for X = Ga and In, respectively.However, Li vacancies, which are formed through delithiation, change the electronic structure substantially from insulating to metallic structure, indicating that the electrical conductivities of the LiXS_2 compounds should be good during cycling.Li ion migration energy barriers are also calculated, and the results show that Li ion diffusions in the LiXS_2 compounds can be as good as those in the currently widely used electrode materials. |
---|---|
ISSN: | 1674-1056 2058-3834 |