An algorithm for ^252Cf-Source-Driven neutron signal denoising based on Compressive Sensing
As photoelectrically detected ^252Cf-source-driven neutron signals always contain noise, a denoising algorithm is proposed based on compressive sensing for the noised neutron signal. In the algorithm, Empirical Mode Decomposition(EMD) is applied to decompose the noised neutron signal and then find o...
Gespeichert in:
Veröffentlicht in: | 核技术:英文版 2015, Vol.26 (6), p.95-99 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As photoelectrically detected ^252Cf-source-driven neutron signals always contain noise, a denoising algorithm is proposed based on compressive sensing for the noised neutron signal. In the algorithm, Empirical Mode Decomposition(EMD) is applied to decompose the noised neutron signal and then find out the noised Intrinsic Mode Function(IMF) automatically. Thus, we only need to use the basis pursuit denoising(BPDN) algorithm to denoise these IMFs. For this reason, the proposed algorithm can be called EMDCSDN(Empirical Mode Decomposition Compressive Sensing Denoising). In addition, five indicators are employed to evaluate the denoising effect. The results show that the EMDCSDN algorithm is more effective than the other denoising algorithms including BPDN. This study provides a new approach for signal denoising at the front-end. |
---|---|
ISSN: | 1001-8042 2210-3147 |