Preparation and Electrochemical Performance of Li[Ni1/3Co1/3Mn1/3]O2 Synthesized Using LizCO3 as Template
Porous structure Li[Ni1/3Co1/3Mn1/3]O2 has been synthesized via a facile carbonate co-precipitation method using Li2CO3 as template and lithium-source. The physical and electrochemical properties of the materials were examined by many characterizations including TGA, XRD, SEM, EDS, TEM, BET, CV, EIS...
Gespeichert in:
Veröffentlicht in: | 中国化学:英文版 2015 (11), p.1303-1309 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Porous structure Li[Ni1/3Co1/3Mn1/3]O2 has been synthesized via a facile carbonate co-precipitation method using Li2CO3 as template and lithium-source. The physical and electrochemical properties of the materials were examined by many characterizations including TGA, XRD, SEM, EDS, TEM, BET, CV, EIS and galvanostatic charge-discharge cycling. The results indicate that the as-synthesized materials by this novel method own a well-ordered layered structure a-NaFeO2 [space group: R-3m(166)], porous morphology, and an average primary particle size of about 150 nm. The porous material exhibits larger specific surface area and delivers a high initial capacity of 169.9 mAh·g^-1 at 0.1 C (1 C=180 mA·g ^-1) between 2.7 and 4.3 V, and 126.4, 115.7 mAh.g 1 are still respectively reached at high rate of 10 C and 20 C. After 100 charge-discharge cycles at 1 C, the capacity retention is 93.3%, indicating the excellent cycling stability. |
---|---|
ISSN: | 1001-604X 1614-7065 |