Preparation and Electrochemical Performance of Li[Ni1/3Co1/3Mn1/3]O2 Synthesized Using LizCO3 as Template

Porous structure Li[Ni1/3Co1/3Mn1/3]O2 has been synthesized via a facile carbonate co-precipitation method using Li2CO3 as template and lithium-source. The physical and electrochemical properties of the materials were examined by many characterizations including TGA, XRD, SEM, EDS, TEM, BET, CV, EIS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:中国化学:英文版 2015 (11), p.1303-1309
1. Verfasser: Jibin Zhang Yanjun Zhong Xiaxing Shi Zhuo Zheng Weibo Hua Yanxiao Chen Wenyuan Liu Benhe Zhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Porous structure Li[Ni1/3Co1/3Mn1/3]O2 has been synthesized via a facile carbonate co-precipitation method using Li2CO3 as template and lithium-source. The physical and electrochemical properties of the materials were examined by many characterizations including TGA, XRD, SEM, EDS, TEM, BET, CV, EIS and galvanostatic charge-discharge cycling. The results indicate that the as-synthesized materials by this novel method own a well-ordered layered structure a-NaFeO2 [space group: R-3m(166)], porous morphology, and an average primary particle size of about 150 nm. The porous material exhibits larger specific surface area and delivers a high initial capacity of 169.9 mAh·g^-1 at 0.1 C (1 C=180 mA·g ^-1) between 2.7 and 4.3 V, and 126.4, 115.7 mAh.g 1 are still respectively reached at high rate of 10 C and 20 C. After 100 charge-discharge cycles at 1 C, the capacity retention is 93.3%, indicating the excellent cycling stability.
ISSN:1001-604X
1614-7065