Phase equilibrium of Cdl_xZnxS alloys studied by first-principles calculations and Monte Carlo simulations

The first-principles calculations based on density functional theory combined with cluster expansion techniques and Monte Carlo (MC) simulations were used to study the phase diagrams of both wurtzite (WZ) and zinc-blende (ZB) Cdl_xZnxS alloys. All formation energies are positive for WZ and ZB Cdl-xZ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:中国物理B:英文版 2016 (1), p.549-555
1. Verfasser: 张付珍 薛红涛 汤富领 李小康 路文江 冯煜东
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The first-principles calculations based on density functional theory combined with cluster expansion techniques and Monte Carlo (MC) simulations were used to study the phase diagrams of both wurtzite (WZ) and zinc-blende (ZB) Cdl_xZnxS alloys. All formation energies are positive for WZ and ZB Cdl-xZnxS alloys, which means that the Cdl-xZnxS alloys are unstable and have a tendency to phase separation. For WZ and ZB Cdl_xZnxS alloys, the consolute temperatures are 655 K and 604 K, respectively, and they both have an asymmetric miscibility gap. We obtained the spatial distributions of Cd and Zn atoms in WZ and ZB Cd0.sZn0.sS alloys at different temperatures by MC simulations. We found that both WZ and ZB phases of Cdo.sZn0.sS alloy exhibit phase segregation of Cd and Zn atoms at low temperature, which is consistent with the phase diagrams.
ISSN:1674-1056
2058-3834