ON THE SETS OF GATEAUX NON-DIFFERENTIABILITY OF LIPSCHITZ ISOMORPHISM BETWEEN BANACH SPACES*t

We prove that for every Lipschitz isomorphism f from a separable Hilbert space H to a Banach space Y with Radon-Nikodym property, there is a bounded surjective linear operator T: H → Y so that (f + T)-1 (NG(f-1)) is a r-null set of H, where NG(f-1) is the set of all the points of Gateaux non-diiTere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:应用数学年刊:英文版 2015 (3), p.324-328
1. Verfasser: Yingbin Ruan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that for every Lipschitz isomorphism f from a separable Hilbert space H to a Banach space Y with Radon-Nikodym property, there is a bounded surjective linear operator T: H → Y so that (f + T)-1 (NG(f-1)) is a r-null set of H, where NG(f-1) is the set of all the points of Gateaux non-diiTerentiability of f -1.
ISSN:2096-0174