ON THE SETS OF GATEAUX NON-DIFFERENTIABILITY OF LIPSCHITZ ISOMORPHISM BETWEEN BANACH SPACES*t
We prove that for every Lipschitz isomorphism f from a separable Hilbert space H to a Banach space Y with Radon-Nikodym property, there is a bounded surjective linear operator T: H → Y so that (f + T)-1 (NG(f-1)) is a r-null set of H, where NG(f-1) is the set of all the points of Gateaux non-diiTere...
Gespeichert in:
Veröffentlicht in: | 应用数学年刊:英文版 2015 (3), p.324-328 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that for every Lipschitz isomorphism f from a separable Hilbert space H to a Banach space Y with Radon-Nikodym property, there is a bounded surjective linear operator T: H → Y so that (f + T)-1 (NG(f-1)) is a r-null set of H, where NG(f-1) is the set of all the points of Gateaux non-diiTerentiability of f -1. |
---|---|
ISSN: | 2096-0174 |