基于小波阈值和字典学习的合成孔径雷达图像压缩

在小波域对合成孔径雷达(SAR)图像进行双重稀疏处理的基础上,提出一种基于小波阈值和字典学习的SAR图像压缩方法.利用SAR图像的统计分布特性,结合空间树结构对小波域的小波系数进行阈值化处理,利用递归最小二乘字典学习算法(RLS-DLA)将小波系数表示为字典稀疏,以在增大字典稀疏度的同时抑制斑噪声,并提高图像的重构效果.结果表明:在低比特率条件下,所提出方法比经典压缩方法的精度更高....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:上海交通大学学报 2015, Vol.49 (10), p.1534-1539
1. Verfasser: 刘瑾瑾 李元祥 张增辉 郁文贤
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:在小波域对合成孔径雷达(SAR)图像进行双重稀疏处理的基础上,提出一种基于小波阈值和字典学习的SAR图像压缩方法.利用SAR图像的统计分布特性,结合空间树结构对小波域的小波系数进行阈值化处理,利用递归最小二乘字典学习算法(RLS-DLA)将小波系数表示为字典稀疏,以在增大字典稀疏度的同时抑制斑噪声,并提高图像的重构效果.结果表明:在低比特率条件下,所提出方法比经典压缩方法的精度更高.
ISSN:1006-2467