CSL代数上在点Jordan高阶可导的映射

设L是希尔伯特空间H上的一个CSL,A lg L是相应地CSL代数。一族线性映射δ={δn,δn:A lg L→A lg L,n∈N}在Ω∈A lg L Jordan高阶可导,如果对所有n∈N,∑i+j=n[δi(A)δj(B)+δj(B)δi(A)]=δ(Ω),其中A,B∈A lg L,AB+BA=Ω。给出了一族线性映射δ={δn:A lg L→A lg L}在0点Jordan高阶可导的充要条件。利用此结果证明了不可约CDCSL代数,因子von Neumann代数上的套子代数(特别地,希尔伯特空间套代数)到其自身的一族线性映射δ={δn,n∈N}在0点Jordan高阶可导当且仅当它是一个高阶...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:六盘水师范学院学报 2015, Vol.27 (5), p.80-84
1. Verfasser: 张慧愿 张文林 安润玲
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:设L是希尔伯特空间H上的一个CSL,A lg L是相应地CSL代数。一族线性映射δ={δn,δn:A lg L→A lg L,n∈N}在Ω∈A lg L Jordan高阶可导,如果对所有n∈N,∑i+j=n[δi(A)δj(B)+δj(B)δi(A)]=δ(Ω),其中A,B∈A lg L,AB+BA=Ω。给出了一族线性映射δ={δn:A lg L→A lg L}在0点Jordan高阶可导的充要条件。利用此结果证明了不可约CDCSL代数,因子von Neumann代数上的套子代数(特别地,希尔伯特空间套代数)到其自身的一族线性映射δ={δn,n∈N}在0点Jordan高阶可导当且仅当它是一个高阶导子。
ISSN:1671-055X