Mobius Isoparametric Hypersurfaces in Sn+1 with Two Distinct Principal Curvatures

<正> A hypersurface x: M→Sn+1 without umbilic point is called a Mbius isoparametrichypersurface if its Mbius form Φ=-ρ-2∑i(ei(H)+∑j(hij-Hδij)ej(logρ))θi vanishes and itsMbius shape operator S=ρ-1(S-Hid) has constant eigenvalues. Here {ei} is a local orthonormalbasis for I=dx·dx with dua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:数学学报:英文版 2002-07 (3), p.437-446
1. Verfasser: Hai Zhong LI Department of Mathematics, Tsinghua University. Beijing 100084. P. R. China Hui Li LIU Department of Mathematics, Northeastern University. Shenyang 110000. P. R. China Chang Ping WANG Key Laboratory of Pure and Applied Mathematics, School of Mathematical Sciences. Peking University, Beijing 100871, P. R. China Guo Song ZHAO Department of Mathematics, Sichuan University, Chengdu 610064. P. R. China
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:<正> A hypersurface x: M→Sn+1 without umbilic point is called a Mbius isoparametrichypersurface if its Mbius form Φ=-ρ-2∑i(ei(H)+∑j(hij-Hδij)ej(logρ))θi vanishes and itsMbius shape operator S=ρ-1(S-Hid) has constant eigenvalues. Here {ei} is a local orthonormalbasis for I=dx·dx with dual basis {θi}, II=∑ijhijθiθJ is the second fundamental form,H=1/n∑i hij, ρ2=n/(n-1)(‖II‖2-nH2) and S is the shape operator of x. It is clear that any conformalimage of a (Euclidean) isoparametric hypersurface in Sn+1 is a Mbius isoparametric hypersurface, butthe converse is not true. In this paper we classify all Mbius isoparametric hypersurfaces in Sn+1 withtwo distinct principal curvatures up to Mbius transformations. By using a theorem of Thorbergsson[1] we also show that the number of distinct principal curvatures of a compact Mbius isoparametrichypersurface embedded in Sn+1 can take only the values 2, 3, 4, 6.
ISSN:1439-8516
1439-7617
DOI:10.1007/s10114-002-0173-y