Mobius Isoparametric Hypersurfaces in Sn+1 with Two Distinct Principal Curvatures
<正> A hypersurface x: M→Sn+1 without umbilic point is called a Mbius isoparametrichypersurface if its Mbius form Φ=-ρ-2∑i(ei(H)+∑j(hij-Hδij)ej(logρ))θi vanishes and itsMbius shape operator S=ρ-1(S-Hid) has constant eigenvalues. Here {ei} is a local orthonormalbasis for I=dx·dx with dua...
Gespeichert in:
Veröffentlicht in: | 数学学报:英文版 2002-07 (3), p.437-446 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | <正> A hypersurface x: M→Sn+1 without umbilic point is called a Mbius isoparametrichypersurface if its Mbius form Φ=-ρ-2∑i(ei(H)+∑j(hij-Hδij)ej(logρ))θi vanishes and itsMbius shape operator S=ρ-1(S-Hid) has constant eigenvalues. Here {ei} is a local orthonormalbasis for I=dx·dx with dual basis {θi}, II=∑ijhijθiθJ is the second fundamental form,H=1/n∑i hij, ρ2=n/(n-1)(‖II‖2-nH2) and S is the shape operator of x. It is clear that any conformalimage of a (Euclidean) isoparametric hypersurface in Sn+1 is a Mbius isoparametric hypersurface, butthe converse is not true. In this paper we classify all Mbius isoparametric hypersurfaces in Sn+1 withtwo distinct principal curvatures up to Mbius transformations. By using a theorem of Thorbergsson[1] we also show that the number of distinct principal curvatures of a compact Mbius isoparametrichypersurface embedded in Sn+1 can take only the values 2, 3, 4, 6. |
---|---|
ISSN: | 1439-8516 1439-7617 |
DOI: | 10.1007/s10114-002-0173-y |