The Growth of Solutions of Higher Order Differential Equations with Coefficients Having the Same Order
In this paper, we consider the growth of solutions of some homogeneous and non- homogeneous higher order differential equations. It is proved that under some conditions for entire functions F, Aji and polynomials Pj(z), Oj(z) (j = 0, 1,..., k - 1; i = 1, 2) with degree n ≥ 1, the equation f(k) + (Ak...
Gespeichert in:
Veröffentlicht in: | 数学研究及应用:英文版 2015 (4), p.387-399 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the growth of solutions of some homogeneous and non- homogeneous higher order differential equations. It is proved that under some conditions for entire functions F, Aji and polynomials Pj(z), Oj(z) (j = 0, 1,..., k - 1; i = 1, 2) with degree n ≥ 1, the equation f(k) + (Ak-l,1 (z)e pk-l(z) +Ak-1,2 (z)eQk-l(z))f(x-1) +...+ (A0,1 (z)eP0(z) + A0,2(z)eQ0(z))f = F, where k ≥ 2, satisfies the properties: When F ≡ 0, all the non-zero solu- tions are of infinite order; when F ≠ 0, there exists at most one exceptional solution f0 with finite order, and all other solutions satisfy -λ(f) = A(f) = σ(f) = ∞. |
---|---|
ISSN: | 2095-2651 |