Interaction between Cu^2+ and different types of surface-modified nanoscale zero-valent iron during their transport in porous media

This study investigated the interaction between Cu^2+and nano zero-valent iron(NZVI)coated with three types of stabilizers(i.e., polyacrylic acid [PAA], Tween-20 and starch) by examining the Cu^2+ uptake, colloidal stability and mobility of surface-modified NZVI(SM-NZVI) in the presence of Cu^2+. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:环境科学学报:英文版 2015 (6), p.180-188
1. Verfasser: Haoran Dong Guangming Zeng Chang Zhang Jie Liang Kito Ahmad Piao Xu Xiaoxiao He Mingyong Lai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigated the interaction between Cu^2+and nano zero-valent iron(NZVI)coated with three types of stabilizers(i.e., polyacrylic acid [PAA], Tween-20 and starch) by examining the Cu^2+ uptake, colloidal stability and mobility of surface-modified NZVI(SM-NZVI) in the presence of Cu^2+. The uptake of Cu^2+ by SM-NZVI and the colloidal stability of the Cu-bearing SM-NZVI were examined in batch tests. The results showed that NZVI coated with different modifiers exhibited different affinities for Cu^2+, which resulted in varying colloidal stability of different SM-NZVI in the presence of Cu^2+. The presence of Cu^2+ exerted a slight influence on the aggregation and settling of NZVI modified with PAA or Tween-20. However, the presence of Cu^2+caused significant aggregation and sedimentation of starch-modified NZVI, which is due to Cu^2+complexation with the starch molecules coated on the surface of the particles. Column experiments were conducted to investigate the co-transport of Cu^2+ in association with SM-NZVI in water-saturated quartz sand. It was presumed that a physical straining mechanism accounted for the retention of Cu-bearing SM-NZVI in the porous media. Moreover, the enhanced aggregation of SM-NZVI in the presence of Cu^2+ may be contributing to this straining effect.
ISSN:1001-0742
1878-7320