Synthesis of layered double hydroxides/graphene oxide nanocomposite as a novel high-temperature CO_2 adsorbent
In this contribution, a novel high-temperature CO_2 adsorbent consisting of Mg-Al layered double hydroxide (LDH) and graphene oxide (GO) nanosheets was prepared and evaluated. The nanocomposite-type adsorbent was synthesized based on the electrostatically driven self-assembly between positively char...
Gespeichert in:
Veröffentlicht in: | 能源化学:英文版 2015, Vol.24 (2), p.127-137 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this contribution, a novel high-temperature CO_2 adsorbent consisting of Mg-Al layered double hydroxide (LDH) and graphene oxide (GO) nanosheets was prepared and evaluated. The nanocomposite-type adsorbent was synthesized based on the electrostatically driven self-assembly between positively charged Mg-Al LDH single sheet and negatively charged GO monolayer. The characteristics of this novel adsorbent were investigated using XRD, FE-SEM, HRTEM, FT-IR, BET and TGA. The results showed that both the CO_2 adsorption capacity and the multi- cycle stability of LDH were increased with the addition of GO owing to the enhanced particle dispersion and stabilization. In particular, the absolute CO_2 capture capacity of LDH was increased by more than twice by adding 6.54 wt% GO as support. GO appeared to be especially effective for supporting LDH sheets. Moreover, the CO_2 capture capacity of the adsorbent could be further increased by doping with 15 wt% K_2CO_3. This work demonstrated a new approach for the preparation of LDH-based hybrid-type adsorbents for CO2 capture. |
---|---|
ISSN: | 2095-4956 |