Utilization of Lithium Slag as An Admixture in Blended Cements: Physieo-meehanical and Hydration Characteristics

Physical and mechanical properties variations of lithium slag were systematically investigated by three different ways such as physical, chemical activation, physical-chemical combined activation. Mechanisms of the cementitious properties and hydration process of lithium slag composite cement were s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:武汉理工大学学报:材料科学英文版 2015 (1), p.129-133
1. Verfasser: TAN Hongbo LI Xiaagguo HE Chao MA Baoguo BAI Yun LUO Zhongtao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Physical and mechanical properties variations of lithium slag were systematically investigated by three different ways such as physical, chemical activation, physical-chemical combined activation. Mechanisms of the cementitious properties and hydration process of lithium slag composite cement were studied by XRD and SEM. The results showed that specific surface area increased from 254 to 700 m2/kg while median particle size decreased from 14.97 to 8.45 urn with the increase of grinding time. Physical, chemical activation and combined activation improved the strength and hydration degree of lithium slag composite cement. Compared with original lithium slag, the flexural strength and compressive strength of mortars were improved significantly with the increase of grinding time. A higher strength of the cement with the lithium slag was attained; The sample with 10% lithium slag got the highest strength when the grinding time was 10 min; the compressive strength was higher than OPC at 28 days, which increased by 12.3%. When the Na2SO4 content was 0.6%, the compressive strength increased by 1.4%; when the Al2(SO4)3·18H2O content was 0.4%, the compressive strength increased by 5.8% at 28 days. Compared with the late strength, the improving degree of early strength was larger with the incorporation of activator. The results of XRD and SEM were consistent with the results of mechanical properties; it is also evident that lithium slag composite cement hydration products were mainly AFt, Ca(OH)2, CaSO4·2H2O, and C-S-H gel.
ISSN:1000-2413
1993-0437