The four dimensional variational data assimilation with multiple regularization parameters as a weak constraint (Tikh-4D-Var) and its preliminary application on typhoon initialization
Traditional variational data assimilation (VDA) with only one regularization parameter constraint cannot produce optimal error tuning for all observations. In this paper, a new data assimilation method of "four dimensional variational data assimilation (4D-Var) with multiple regularization parameter...
Gespeichert in:
Veröffentlicht in: | 中国科学:地球科学英文版 2014 (11), p.2690-2701 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2701 |
---|---|
container_issue | 11 |
container_start_page | 2690 |
container_title | 中国科学:地球科学英文版 |
container_volume | |
creator | ZHONG Jian FEI JianFang CHENG XiaoPing HUANG XiaoGang |
description | Traditional variational data assimilation (VDA) with only one regularization parameter constraint cannot produce optimal error tuning for all observations. In this paper, a new data assimilation method of "four dimensional variational data assimilation (4D-Var) with multiple regularization parameters as a weak constraint (Tikh-4D-Var)" is proposed by imposing different reg- ularization parameters for different observations. Meanwhile, a new multiple regularization parameters selection method, which is suitable for actual high-dimensional data assimilation system, is proposed based on the posterior information of 4D-Var system. Compared with the traditional single regularization parameter selection method, computation of the proposed multiple regularization parameters selection method is smaller. Based on WRF3.3.1 4D-Vat data assimilation system, initiali- zation and simulation of typhoon Chaba (2010) with the new Tikh-4D-Var method are compared with its counterpart 4D-Var to demonstrate the effectiveness of the new method. Results show that the new Tikh-4D-Var method can accelerate the con vergence with less iterations. Moreover, compared with 4D-Var method, the typhoon track, intensity (including center surface pressure and maximum wind speed) and structure prediction are obviously improved with Tikh-4D-Var method for 72-h pre- diction. In addition, the accuracy of the observation error variances can be reflected by the multiple regularization parameters. |
format | Article |
fullrecord | <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_primary_662808851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>662808851</cqvip_id><sourcerecordid>662808851</sourcerecordid><originalsourceid>FETCH-chongqing_primary_6628088513</originalsourceid><addsrcrecordid>eNqNTVtOwzAQtBBIVNA7rPiP1DQlcb95iANE_FarxI2X-oW9oSongDPRO_UKWKQHYLXSjHZmZy7ErJT1uijlurnMvG5WRVOV1bWYp_S2yFNlZdnMxE-rFWz9GKEnq1wi79DAB0ZCnniPjIApkSXzd4M9sQY7GqZgFEQ1jCb7PycxYESrWMWUnwBhr3AHnXeJI5JjOB2_WtrpYvVYvGI8Hb8BXQ_ECUJUJpc4jAfAEAx1U2JePgTtM5IjJjTnrltxtUWT1PyMN-Lu-al9eCk67d3wTm7YhEg2523qeikXUt6X1b9Mv0OtbBo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The four dimensional variational data assimilation with multiple regularization parameters as a weak constraint (Tikh-4D-Var) and its preliminary application on typhoon initialization</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>ZHONG Jian FEI JianFang CHENG XiaoPing HUANG XiaoGang</creator><creatorcontrib>ZHONG Jian FEI JianFang CHENG XiaoPing HUANG XiaoGang</creatorcontrib><description>Traditional variational data assimilation (VDA) with only one regularization parameter constraint cannot produce optimal error tuning for all observations. In this paper, a new data assimilation method of "four dimensional variational data assimilation (4D-Var) with multiple regularization parameters as a weak constraint (Tikh-4D-Var)" is proposed by imposing different reg- ularization parameters for different observations. Meanwhile, a new multiple regularization parameters selection method, which is suitable for actual high-dimensional data assimilation system, is proposed based on the posterior information of 4D-Var system. Compared with the traditional single regularization parameter selection method, computation of the proposed multiple regularization parameters selection method is smaller. Based on WRF3.3.1 4D-Vat data assimilation system, initiali- zation and simulation of typhoon Chaba (2010) with the new Tikh-4D-Var method are compared with its counterpart 4D-Var to demonstrate the effectiveness of the new method. Results show that the new Tikh-4D-Var method can accelerate the con vergence with less iterations. Moreover, compared with 4D-Var method, the typhoon track, intensity (including center surface pressure and maximum wind speed) and structure prediction are obviously improved with Tikh-4D-Var method for 72-h pre- diction. In addition, the accuracy of the observation error variances can be reflected by the multiple regularization parameters.</description><identifier>ISSN: 1674-7313</identifier><identifier>EISSN: 1869-1897</identifier><language>eng</language><subject>初始化 ; 台风路径 ; 四维变分同化方法 ; 四维变分资料同化 ; 应用 ; 正则化参数 ; 正规化 ; 调整参数</subject><ispartof>中国科学:地球科学英文版, 2014 (11), p.2690-2701</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60111X/60111X.jpg</thumbnail><link.rule.ids>315,781,785,4025</link.rule.ids></links><search><creatorcontrib>ZHONG Jian FEI JianFang CHENG XiaoPing HUANG XiaoGang</creatorcontrib><title>The four dimensional variational data assimilation with multiple regularization parameters as a weak constraint (Tikh-4D-Var) and its preliminary application on typhoon initialization</title><title>中国科学:地球科学英文版</title><addtitle>SCIENCE CHINA Earth Sciences</addtitle><description>Traditional variational data assimilation (VDA) with only one regularization parameter constraint cannot produce optimal error tuning for all observations. In this paper, a new data assimilation method of "four dimensional variational data assimilation (4D-Var) with multiple regularization parameters as a weak constraint (Tikh-4D-Var)" is proposed by imposing different reg- ularization parameters for different observations. Meanwhile, a new multiple regularization parameters selection method, which is suitable for actual high-dimensional data assimilation system, is proposed based on the posterior information of 4D-Var system. Compared with the traditional single regularization parameter selection method, computation of the proposed multiple regularization parameters selection method is smaller. Based on WRF3.3.1 4D-Vat data assimilation system, initiali- zation and simulation of typhoon Chaba (2010) with the new Tikh-4D-Var method are compared with its counterpart 4D-Var to demonstrate the effectiveness of the new method. Results show that the new Tikh-4D-Var method can accelerate the con vergence with less iterations. Moreover, compared with 4D-Var method, the typhoon track, intensity (including center surface pressure and maximum wind speed) and structure prediction are obviously improved with Tikh-4D-Var method for 72-h pre- diction. In addition, the accuracy of the observation error variances can be reflected by the multiple regularization parameters.</description><subject>初始化</subject><subject>台风路径</subject><subject>四维变分同化方法</subject><subject>四维变分资料同化</subject><subject>应用</subject><subject>正则化参数</subject><subject>正规化</subject><subject>调整参数</subject><issn>1674-7313</issn><issn>1869-1897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNTVtOwzAQtBBIVNA7rPiP1DQlcb95iANE_FarxI2X-oW9oSongDPRO_UKWKQHYLXSjHZmZy7ErJT1uijlurnMvG5WRVOV1bWYp_S2yFNlZdnMxE-rFWz9GKEnq1wi79DAB0ZCnniPjIApkSXzd4M9sQY7GqZgFEQ1jCb7PycxYESrWMWUnwBhr3AHnXeJI5JjOB2_WtrpYvVYvGI8Hb8BXQ_ECUJUJpc4jAfAEAx1U2JePgTtM5IjJjTnrltxtUWT1PyMN-Lu-al9eCk67d3wTm7YhEg2523qeikXUt6X1b9Mv0OtbBo</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>ZHONG Jian FEI JianFang CHENG XiaoPing HUANG XiaoGang</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope></search><sort><creationdate>2014</creationdate><title>The four dimensional variational data assimilation with multiple regularization parameters as a weak constraint (Tikh-4D-Var) and its preliminary application on typhoon initialization</title><author>ZHONG Jian FEI JianFang CHENG XiaoPing HUANG XiaoGang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_primary_6628088513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>初始化</topic><topic>台风路径</topic><topic>四维变分同化方法</topic><topic>四维变分资料同化</topic><topic>应用</topic><topic>正则化参数</topic><topic>正规化</topic><topic>调整参数</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZHONG Jian FEI JianFang CHENG XiaoPing HUANG XiaoGang</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>中国科学:地球科学英文版</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZHONG Jian FEI JianFang CHENG XiaoPing HUANG XiaoGang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The four dimensional variational data assimilation with multiple regularization parameters as a weak constraint (Tikh-4D-Var) and its preliminary application on typhoon initialization</atitle><jtitle>中国科学:地球科学英文版</jtitle><addtitle>SCIENCE CHINA Earth Sciences</addtitle><date>2014</date><risdate>2014</risdate><issue>11</issue><spage>2690</spage><epage>2701</epage><pages>2690-2701</pages><issn>1674-7313</issn><eissn>1869-1897</eissn><abstract>Traditional variational data assimilation (VDA) with only one regularization parameter constraint cannot produce optimal error tuning for all observations. In this paper, a new data assimilation method of "four dimensional variational data assimilation (4D-Var) with multiple regularization parameters as a weak constraint (Tikh-4D-Var)" is proposed by imposing different reg- ularization parameters for different observations. Meanwhile, a new multiple regularization parameters selection method, which is suitable for actual high-dimensional data assimilation system, is proposed based on the posterior information of 4D-Var system. Compared with the traditional single regularization parameter selection method, computation of the proposed multiple regularization parameters selection method is smaller. Based on WRF3.3.1 4D-Vat data assimilation system, initiali- zation and simulation of typhoon Chaba (2010) with the new Tikh-4D-Var method are compared with its counterpart 4D-Var to demonstrate the effectiveness of the new method. Results show that the new Tikh-4D-Var method can accelerate the con vergence with less iterations. Moreover, compared with 4D-Var method, the typhoon track, intensity (including center surface pressure and maximum wind speed) and structure prediction are obviously improved with Tikh-4D-Var method for 72-h pre- diction. In addition, the accuracy of the observation error variances can be reflected by the multiple regularization parameters.</abstract></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7313 |
ispartof | 中国科学:地球科学英文版, 2014 (11), p.2690-2701 |
issn | 1674-7313 1869-1897 |
language | eng |
recordid | cdi_chongqing_primary_662808851 |
source | SpringerNature Journals; Alma/SFX Local Collection |
subjects | 初始化 台风路径 四维变分同化方法 四维变分资料同化 应用 正则化参数 正规化 调整参数 |
title | The four dimensional variational data assimilation with multiple regularization parameters as a weak constraint (Tikh-4D-Var) and its preliminary application on typhoon initialization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A09%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20four%20dimensional%20variational%20data%20assimilation%20with%20multiple%20regularization%20parameters%20as%20a%20weak%20constraint%20%EF%BC%88Tikh-4D-Var%EF%BC%89%20and%20its%20preliminary%20application%20on%20typhoon%20initialization&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%EF%BC%9A%E5%9C%B0%E7%90%83%E7%A7%91%E5%AD%A6%E8%8B%B1%E6%96%87%E7%89%88&rft.au=ZHONG%20Jian%20FEI%20JianFang%20CHENG%20XiaoPing%20HUANG%20XiaoGang&rft.date=2014&rft.issue=11&rft.spage=2690&rft.epage=2701&rft.pages=2690-2701&rft.issn=1674-7313&rft.eissn=1869-1897&rft_id=info:doi/&rft_dat=%3Cchongqing%3E662808851%3C/chongqing%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=662808851&rfr_iscdi=true |