The four dimensional variational data assimilation with multiple regularization parameters as a weak constraint (Tikh-4D-Var) and its preliminary application on typhoon initialization

Traditional variational data assimilation (VDA) with only one regularization parameter constraint cannot produce optimal error tuning for all observations. In this paper, a new data assimilation method of "four dimensional variational data assimilation (4D-Var) with multiple regularization parameter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:中国科学:地球科学英文版 2014 (11), p.2690-2701
1. Verfasser: ZHONG Jian FEI JianFang CHENG XiaoPing HUANG XiaoGang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Traditional variational data assimilation (VDA) with only one regularization parameter constraint cannot produce optimal error tuning for all observations. In this paper, a new data assimilation method of "four dimensional variational data assimilation (4D-Var) with multiple regularization parameters as a weak constraint (Tikh-4D-Var)" is proposed by imposing different reg- ularization parameters for different observations. Meanwhile, a new multiple regularization parameters selection method, which is suitable for actual high-dimensional data assimilation system, is proposed based on the posterior information of 4D-Var system. Compared with the traditional single regularization parameter selection method, computation of the proposed multiple regularization parameters selection method is smaller. Based on WRF3.3.1 4D-Vat data assimilation system, initiali- zation and simulation of typhoon Chaba (2010) with the new Tikh-4D-Var method are compared with its counterpart 4D-Var to demonstrate the effectiveness of the new method. Results show that the new Tikh-4D-Var method can accelerate the con vergence with less iterations. Moreover, compared with 4D-Var method, the typhoon track, intensity (including center surface pressure and maximum wind speed) and structure prediction are obviously improved with Tikh-4D-Var method for 72-h pre- diction. In addition, the accuracy of the observation error variances can be reflected by the multiple regularization parameters.
ISSN:1674-7313
1869-1897