Effects of Branches on the Crystallization Kinetics of Polypropylene-g- Polystyrene and Polypropylene-g-Poly(n-butyl acrylate) Graft Copolymers with Well-defined Molecular Structures

Effects of branches on the crystallization kinetics of polypropylene-g-polystyrene (PP-g-PS) and polypropylene-g- poly(n-butyl acrylate) (PP-g-PnBA) graft copolymers with well-defined molecular structures were systematically investigated by DSC. The Avrami equation was used to analyze the isothermal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:高分子科学:英文版 2014 (3), p.333-349
1. Verfasser: Lu Wang Zhi-wei Jiang Feng Liu Zhi-jie Zhang Tao Tang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Effects of branches on the crystallization kinetics of polypropylene-g-polystyrene (PP-g-PS) and polypropylene-g- poly(n-butyl acrylate) (PP-g-PnBA) graft copolymers with well-defined molecular structures were systematically investigated by DSC. The Avrami equation was used to analyze the isothermal crystallization process, while the analysis of nonisothermal crystallization process was based on the Jeziorny-modified Avrami model and Mo model. The kinetics results of isothermal and nonisothermal crystallization verified the peculiar effects of branches on the crystallization process of PP backbones in PP-g-PS and PP-g-PnBA graft copolymers: on one hand, the interaction between branches (n-n interaction between PS branches, or dipole-dipole interaction between PnBA branches) restrained the mobility and reptation ability of the PP backbones, which hindered the crystallization process; on the other hand, the heterogeneous nucleation effect resulting from the branched structure and fluctuation-assisted nucleation mechanism (caused by microphase separation between the PS or PnBA rich phase and the PP rich phase) became more pronounced with increasing branch length, which facilitated the crystallization process.
ISSN:0256-7679
1439-6203