Characterizing Quantum Correlations in Arbitrary-Dimensional Bipartite Systems Using Hurwitz's Theory

Quantum correlations play vital roles in the quantum features in quantum information processing tasks. Among the measures of quantum correlations, quantum discord (QD) and entanglement of formation (EOF) axe two significant ones. Recent research has shown that there exists a relation between QD and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:理论物理通讯:英文版 2014, Vol.61 (3), p.273-280
1. Verfasser: LI Hui LI Yan-Song WANG Shu-Hao LONG Gui-Lu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum correlations play vital roles in the quantum features in quantum information processing tasks. Among the measures of quantum correlations, quantum discord (QD) and entanglement of formation (EOF) axe two significant ones. Recent research has shown that there exists a relation between QD and EOF, which makes QD more significant in quantum information theory. However, until now, there exists no general method of chaxaeterizing quantum discord in high-dimensional quantum systems. In this paper, we have proposed a general method for calculating quantum discord in axbitraxy-dimensionM bipaxtite quantum systems in terms of Hurwitz's theory. Applications including the Werner state, the spin-1 XXZ model thermal equilibrium state, the Horodecki state, and the separable-bound-free entanglement state are investigated. We present the method of obtaining the EOF of axbitraxy-dimensional bipaxtite quantum states via purification, and the relations.hip between QD and EOF.
ISSN:0253-6102