Diversity and bioactivity of actinomycetes from Signy Is- land terrestrial soils, maritime Antarctic

The Antarctic represents a largely untapped source for isolation of new microorganisms with potential to produce bio- active natural products. Actinomycetes are of special interest among such microorganisms as they are known to produce a large number of natural products, many of which have clinical,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:极地科学进展:英文版 2013, Vol.24 (4), p.208-212
1. Verfasser: Shing Yi Pan Geok Yuan Annie Tan Peter Convey David A. Pearce Irene K. R Tan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Antarctic represents a largely untapped source for isolation of new microorganisms with potential to produce bio- active natural products. Actinomycetes are of special interest among such microorganisms as they are known to produce a large number of natural products, many of which have clinical, pharmaceutical or agricultural applications. We isolated, characterized and classified actinomycetes from soil samples collected from different locations on Signy Island, South Orkney Islands, in the maritime Antarctic. A total of 95 putative actinomyeete strains were isolated from eight soil samples using eight types of selective isolation media. The strains were dereplicated into 16 groups based on morphology and Amplified Ribosomal DNA Restriction Analysis (ARDRA) patterns. Analysis of 16S rRNA gene sequences of representatives from each group showed that streptomy- cetes were the dominant actinomycetes isolated from these soils; however, there were also several strains belonging to diverse and rare genera in the class Actinobacteria, including Demetria, Glaciibacter, Kocuria, Marmoricola, Nakamurella and Tsukamurella. In addition, screening for antibacterial activity and non-ribosomal peptide synthetase genes showed that many of the actinomycete strains have the potential to produce antibacterial compounds.
ISSN:1674-9928