Effect of residual AI content on microstructure and mechanical properties of Grade B+Steel for castings for locomotives

The bogie made of Grade B+ steel is one of the most important parts of heavy haul trains. Some accidents were found to be the result of fracture failure of the bogies. It is very important to find the reason why the fracture failure occurred. Because AI was added for the final deoxidation during the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:中国铸造:英文版 2013 (6), p.391-395
1. Verfasser: Wang Kaifeng Guo Erjun Cao Guojian Wang Liping Feng Yicheng Jiang Wenyong Tao Chunguo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The bogie made of Grade B+ steel is one of the most important parts of heavy haul trains. Some accidents were found to be the result of fracture failure of the bogies. It is very important to find the reason why the fracture failure occurred. Because AI was added for the final deoxidation during the smelting process of the Grade B+Steel, residual AI existed to some extent in the castings. High residual AI content in the bogie casting was presumed to be the reason for the fracture. In this work, the influence of residual AI content in the range of 0.015wt.% to 0.3wt.% on the microstructure and mechanical properties of the Grade B+ Steel was studied. The experimental results showed that when the residual AI content is between 0.02wt.% and 0.20wt.%, the mechanical properties of the steel meet the requirements of technical specification for heavy haul train parts, and the fracture is typical plastic fractures. If the residual AI content is less than 0.02wt.%, the microstructures are coarse, and the mechanical properties can not meet the demand of bogie steel castings. When the residual AI content is more than 0.2wt.%, the elongation, reduction of area, and low-temperature impact energy markedly deteriorate. The fracture mode then changes from plastic fracture to cleavage brittle fracture. Therefore, the amount of AI addition for the final deoxidation during the smelting process must be strictly controlled. The optimum addition amount needs to be controlled within the range of 0.02wt.% to 0.20wt.% for the Grade B+Steel.
ISSN:1672-6421
2365-9459