Invariant subspaces and conditional Lie-Baeicklund symmetries of inhomogeneous nonlinear diffusion equations
The inhomogeneous nonlinear diffusion equation is studied by invariant subspace and condi- tional Lie=Bgcklund symmetry methods. It is shown that the equations admit a class of invariant subspaces governed by the nonlinear ordinary differential equations, which is equivalent to a kind of higher=orde...
Gespeichert in:
Veröffentlicht in: | 中国科学:数学英文版 2013 (11), p.2187-2203 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The inhomogeneous nonlinear diffusion equation is studied by invariant subspace and condi- tional Lie=Bgcklund symmetry methods. It is shown that the equations admit a class of invariant subspaces governed by the nonlinear ordinary differential equations, which is equivalent to a kind of higher=order conditional Lie-B~icklund symmetries of the equations. As a consequence, a number of new solutions to the inhomogeneous nonlinear diffusion equations are constructed explicitly or reduced to solving finite-dimensional dynamical sys- tems. |
---|---|
ISSN: | 1674-7283 1869-1862 |