Effects of Si^3+ and H+ Irradiation Friction on Tungsten Evaluated by Internal Method
Effects of Si^3+ and H+ irradiation on tungsten were investigated by internal friction (IF) technique. Scanning electron microscope (SEM) analysis revealed that sequential dual Si+H irradiation resulted in more serious damage than single Si irradiation. After irradiation, the IF background was signi...
Gespeichert in:
Veröffentlicht in: | 等离子体科学和技术:英文版 2013 (10), p.1071-1075 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Effects of Si^3+ and H+ irradiation on tungsten were investigated by internal friction (IF) technique. Scanning electron microscope (SEM) analysis revealed that sequential dual Si+H irradiation resulted in more serious damage than single Si irradiation. After irradiation, the IF background was significantly enhanced. Besides, two obvious IF peaks were initially found in tem- perature range of 70~330 K in the sequential Si+H irradiated tungsten sample. The mechanism of increased IF background for the irradiated samples was suggested to originate from the high density dislocations induced by ion irradiation. On the other hand, the relaxation peak PL and non-relaxation peak PH in the Si+H irradiated sample were ascribed to the interaction process of hydrogen atoms with mobile dislocations and transient processes of hydrogen redistribution, respectively. The obtained experimental results verified the high sensitivity of IF method on the irradiation damage behaviors in nuclear materials. |
---|---|
ISSN: | 1009-0630 |