Characterization and of Ralstonia TAL-Like DNA-Binding Specificities Effectors

Transcription activator-like effectors (TALEs) from Xanthomonas sp. have been used as customizable DNA- binding modules for genome-engineering applications, Ralstonia solanacearum TALE-like proteins (RTLs) exhibit similar structural features to TALEs, including a central DNA-binding domain composed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:分子植物:英文版 2013 (4), p.1318-1330
1. Verfasser: Lixin Li Ahmed Atef Agnieszka Piatek Zahir Ali Marek Piatek Mustapha Aouida Altanbadralt Sharakuu Ali Mahjoub Guangchao Wang Suhail Khan Nina V. Fedoroff Jian-Kang Zhu Magdy M. Mahfouz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transcription activator-like effectors (TALEs) from Xanthomonas sp. have been used as customizable DNA- binding modules for genome-engineering applications, Ralstonia solanacearum TALE-like proteins (RTLs) exhibit similar structural features to TALEs, including a central DNA-binding domain composed of 35 amino acid-long repeats. Here, we characterize the RTLs and show that they localize in the plant cell nucleus, mediate DNA binding, and might function as transcriptional activators. RTLs have a unique DNA-binding architecture and are enriched in repeat variable di-residues (RVDs), which determine repeat DNA-binding specificities. We determined the DNA-binding specificities for the RVD sequences ND, HN, NP, and NT. The RVD ND mediates highly specific interactions with C nucleotide, HN interacts spe- cifically with A and G nucleotides, and NP binds to C, A, and G nucleotides. Moreover, we developed a highly efficient repeat assembly approach for engineering RTL effectors. Taken together, our data demonstrate that RTLs are unique DNA-targeting modules that are excellent alternatives to be tailored to bind to user-selected DNA sequences for targeted genomic and epigenomic modifications. These findings will facilitate research concerning RTL molecular biology and RTL roles in the pathogenicity of Ralstonia spp.
ISSN:1674-2052
1752-9867