LIE IDEALS, MORITA CONTEXT AND GENERALIZED (α β)-DERIVATIONS
A classical problem in ring theory is to study conditions under which a ring is forced to become commutative. Stimulated from Jacobson's famous result, several tech- niques are developed to achieve this goal. In the present note, we use a pair of rings, which are the ingredients of a Morita context,...
Gespeichert in:
Veröffentlicht in: | 数学物理学报:B辑英文版 2013 (4), p.1059-1070 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A classical problem in ring theory is to study conditions under which a ring is forced to become commutative. Stimulated from Jacobson's famous result, several tech- niques are developed to achieve this goal. In the present note, we use a pair of rings, which are the ingredients of a Morita context, and obtain that if one of the ring is prime with the generalized (α β)-derivations that satisfy certain conditions on the trace ideal of the ring, which by default is a Lie ideal, and the other ring is reduced, then the trace ideal of the reduced ring is contained in the center of the ring. As an outcome, in case of a semi-projective Morita context, the reduced ring becomes commutative. |
---|---|
ISSN: | 0252-9602 1572-9087 |