Catalytic ozonation performance and surface property of supported Fe304 catalysts dispersions
Fe304 was supported on mesoporous A12O3 or SiO2 (50 wt.%) using an incipient wetness impregnation method, and Fe304/A12O3 exhibited higher catalytic efficiency for the degradation of 2,4-dichlorophenoxyace- tic acid andpara-chlorobenzoic acid aqueous solution with ozone. The effect and morphology of...
Gespeichert in:
Veröffentlicht in: | 中国环境科学与工程前沿:英文版 2013 (3), p.451-456 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fe304 was supported on mesoporous A12O3 or SiO2 (50 wt.%) using an incipient wetness impregnation method, and Fe304/A12O3 exhibited higher catalytic efficiency for the degradation of 2,4-dichlorophenoxyace- tic acid andpara-chlorobenzoic acid aqueous solution with ozone. The effect and morphology of supported Fe304 on catalytic ozonation performance were investigated based on the characterization results of X-ray diffraction, X-ray photoelectron spectroscopy, BET analysis and Fourier transform infrared spectroscopy. The results indicated that the physical and chemical properties of the catalyst supports especially their Lewis acid sites had a significant influence on the catalytic activity. In comparison with SiO2, more Lewis acid sites existed on the surface of A12O3, resulting in higher catalytic ozonation activity. During the reaction process, no significant Fe ions release was observed. Moreover, Fe304/A12O3 exhibited stable structure and activity after successive cyclic experiments. The results indicated that the catalyst is a promising ozonation catalyst with magnetic separation in drinking water treatment. |
---|---|
ISSN: | 2095-2201 2095-221X |