An online monitoring system for atmospheric nitrous acid (HONO) based on stripping coil and ion chromatography

A new instrument for measuring atmospheric nitrous acid(HONO) was developed,consisting of a double-wall glass stripping coil sampler coupled with ion chromatography(SC-IC).SC-IC is featured by small size(50 × 35 × 25 cm) and modular construction,including three independent parts:the sampling unit,th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:环境科学学报:英文版 2013 (5), p.895-907
1. Verfasser: Peng Cheng Yafang Cheng Keding Lu Hang Su Qiang Yang Yikan Zou Yanran Zhao Huabing Dong Limin Zeng Yuanhang Zhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new instrument for measuring atmospheric nitrous acid(HONO) was developed,consisting of a double-wall glass stripping coil sampler coupled with ion chromatography(SC-IC).SC-IC is featured by small size(50 × 35 × 25 cm) and modular construction,including three independent parts:the sampling unit,the transfer and supporting unit,and the detection unit.High collection efficiency(〉 99%) was achieved with 25 μmol/L Na2CO3 as absorption solution even in the presence of highly acidic compounds.This instrument has a detection limit of 8 pptv at 15 min time resolution,with a measurement uncertainty of 7%.Potential interferences from NOx,NO2+SO2,NO2+VOCs,HONO+O3,HNO3,peroxyacetyl nitrite(PAN) and particle nitrite were quantified in laboratory studies and were found to be insignificant under typical atmospheric conditions.Within the framework of the 3C-STAR project,inter-comparison between the SC-IC and LOPAP(long path liquid absorption photometer) was conducted at a rural site in the Pearl River Delta.Good agreement was achieved between the two instruments over three weeks.Both instruments determined a clear diurnal profile of ambient HONO concentrations from 0.1 to 2.5 ppbv.However,deviations were found for low ambient HONO concentrations(i.e.〈 0.3 ppbv),which cannot be explained by previous investigated interference species.To accurately determine the HONO budget under illuminated conditions,more intercomparison of HONO measurement techniques is still needed in future studies,especially at low HONO concentrations.
ISSN:1001-0742
1878-7320