Color Estimation for Thermal Infrared Imagery Based on Kemel PCA and Sparse Representation

Adding colors to monochrome thermal infrared images can help observers understand the scenery better. A nonlinear color estimation method for single-band thermal infrared imagery based on kernel principal component analysis (KPCA) and sparse representation was proposed. Nonlinear features of infrare...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:东华大学学报:英文版 2012, Vol.29 (6), p.475-479
1. Verfasser: 孙韶媛 赵海涛 谷小婧
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adding colors to monochrome thermal infrared images can help observers understand the scenery better. A nonlinear color estimation method for single-band thermal infrared imagery based on kernel principal component analysis (KPCA) and sparse representation was proposed. Nonlinear features of infrared image were extracted using KPCA. The relationship between image features and chromatic values was learned using sparse representation and a color estimation model was obtained. The thermal infrared images can be rendered automatically using the color estimation model. The experimental results show that the proposed method can render infrared image with an accurate color appearance. The proposed idea can also be used in other color estimation problem.
ISSN:1672-5220