Hydrophilic Modification of Microporous Polysulfone Membrane via Surface-Initiated Atom Transfer Radical Polymerization and Hydrolysis of Poly(glycidylmethacrylate)
Poly(glycidylmethacrylate) (PGMA) brushes were grafted from chloromethylated polysulfone (CMPSF) mem- brane surface by surface-initiated atom transfer radical polymerization (S1-ATRP), and the grafting was followed by hydrolysis of epoxy groups in the grafting chains to improve the membrane's hydrop...
Gespeichert in:
Veröffentlicht in: | 中国化学:英文版 2012, Vol.30 (10), p.2473-2482 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Poly(glycidylmethacrylate) (PGMA) brushes were grafted from chloromethylated polysulfone (CMPSF) mem- brane surface by surface-initiated atom transfer radical polymerization (S1-ATRP), and the grafting was followed by hydrolysis of epoxy groups in the grafting chains to improve the membrane's hydrophilie property. Fourier trans- form infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) measurements confirmed the suc- cessful grafting and hydrolysis of PGMA. The grafting degree of the monomer, measured by periodic acid titration and gravimetric analysis, increased linearly with the polymerization time, while the static water contact angle of the membrane grafted with PGMA or hydrolyzed PGMA linearly decreased. In comparison with the PGMA-grafted membranes, the hydrolyzed PGMA-grafted membranes possess stronger hydrophilicity as indicated by their contact angle and hydration capacity, and as a result they have an improved antifouling property. Therefore, the control of the hydrophilicity of PSF membrane could be realized through adjusting the polymerization time and transforming the functional groups in the grafting chain. |
---|---|
ISSN: | 1001-604X 1614-7065 |