Biosorption of Cu(II) to extracellular polymeric substances (EPS) from Synechoeystis sp.: a fluorescence quenching study

Biosorption of extracellular polymeric substances (EPS) from Synechocystis sp. (cyanobacterium) with Cu(II) was investigated using fluorescence spectroscopy. Three fluorescence peaks were found in the excitation-emission matrix (EEM) fluorescence spectra of EPS. Fluorescence of peak A (Ex/Em = 275/4...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:中国环境科学与工程前沿:英文版 2012, Vol.6 (4), p.493-497
1. Verfasser: Xiangliang PAN Jing LIU Wenjuan SONG Daoyong ZHANG
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biosorption of extracellular polymeric substances (EPS) from Synechocystis sp. (cyanobacterium) with Cu(II) was investigated using fluorescence spectroscopy. Three fluorescence peaks were found in the excitation-emission matrix (EEM) fluorescence spectra of EPS. Fluorescence of peak A (Ex/Em = 275/452 nm) and peak C (Ex/Em= 350/452nm) were originated from humic-like substances and fluorescence of peak B (Ex/ Em= 275/338nm) was attributed to protein-like sub- stances. Fluorescence of peaks A, B, and C could be quenched by Cu(II). The effective quenching constants (lg Ka) were 2.8-5.84 for peak A, 6.4-9.24 for peak B, and 3.48-6.68 for peak C, respectively. The values of lg Ka showed a decreasing trend with increasing temperature, indicating that the quenching processes were static in nature. The binding constants (lg Kb) followed the order of peak A 〉 peak B 〉 peak C, implying that the humic-like substances in EPS have greater Cu(II) binding capacity than the protein-like substances. The binding site number, n, in EPS-Cu(II) complexes for peaks A, B, and C was less than 1. This suggests the negative cooperativity between multiple binding sites and the presence of more than one Cu binding site.
ISSN:2095-2201
2095-221X