小波分析用于土壤速效钾含量高光谱估测研究

【目的】对土壤高光谱数据去噪提纯,提高土壤速效钾含量高光谱估测模型的精度和实用性。【方法】选取土壤有机质、碱解氮、有效磷含量近似而速效钾含量差异较大的样本76个,对土壤样本反射率对数的一阶导数光谱分别基于4种函数进行多层小波离散分解;提取小波低频系数,构建土壤速效钾含量高光谱估测模型。【结果】小波分解1—3层获得的低频系数可用以代表原始光谱。基于各小波函数相同尺度的低频系数,土壤速效钾含量估测建模精度差异不大。其中基于Bior 1.3函数分解的第2层低频系数建模精度略高,作为最佳估测模型,在数据压缩到25%、反映输入光谱信息95.6%的基础上,建模R2达到0.976,RMSE为10.66 mg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:中国农业科学 2012, Vol.45 (7), p.1425-1431
1. Verfasser: 陈红艳 赵庚星 李希灿
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:【目的】对土壤高光谱数据去噪提纯,提高土壤速效钾含量高光谱估测模型的精度和实用性。【方法】选取土壤有机质、碱解氮、有效磷含量近似而速效钾含量差异较大的样本76个,对土壤样本反射率对数的一阶导数光谱分别基于4种函数进行多层小波离散分解;提取小波低频系数,构建土壤速效钾含量高光谱估测模型。【结果】小波分解1—3层获得的低频系数可用以代表原始光谱。基于各小波函数相同尺度的低频系数,土壤速效钾含量估测建模精度差异不大。其中基于Bior 1.3函数分解的第2层低频系数建模精度略高,作为最佳估测模型,在数据压缩到25%、反映输入光谱信息95.6%的基础上,建模R2达到0.976,RMSE为10.66 mg.kg-1,经验证模型具有较好的预测准确度。【结论】通过小波分析获得小波系数,既提取了土壤高光谱信息,又对数据进行了压缩,结合偏最小二乘回归预测土壤速效钾含量是可行的。
ISSN:0578-1752