Identification of novel HLA-A 0201-restricted epitopes from anterior gradient-2 as a tumor-associated antigen against colorectal cancer

Anterior gradient-2 (AGR2) promotes tumor growth, cell migration and cellular transformation and its enhanced expression is almost completely restricted to malignant tissues, thus making AGR2 an interesting target for the development of immunotherapeutic strategies. We investigated whether the AGR2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:中国免疫学杂志:英文版 2012, Vol.9 (2), p.175-183
1. Verfasser: Hyun Ju Lee Cheol Yi Hong Chun-Ji Jin Mi-Hyun Kim Youn-Kyung Lee Thanh-Nhan Nguyen-Pham Hyunah Lee Byoung Chul Park Ik-Joo Chung Hyeoung-Joon Kim Je-Jung Lee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Anterior gradient-2 (AGR2) promotes tumor growth, cell migration and cellular transformation and its enhanced expression is almost completely restricted to malignant tissues, thus making AGR2 an interesting target for the development of immunotherapeutic strategies. We investigated whether the AGR2 molecule comprises human leukocyte antigen (HLA)-A 0201-binding epitopes recognized by human cytotoxic T lymphocytes (CTLs), which could be targeted in dendritic cell (DC)-based cancer immunotherapy against colorectal cancer (CRC). We reviewed the sequence of AGR2 for peptides that could potentially bind to HLA-A 0201 with the aid of a computer-based program. Five candidate peptides with different binding scores were synthesized and tested. These peptides were then assessed for their immunogenicity to elicit specific immune responses mediated by CTLs in vitro by means of enzyme-linked immunospot assays and CTL assays. AGR2 was highly expressed in several CRC cell lines, including DK01, DLD1, KM 12C, HCT-8 and HT-29. DCs pulsed with AGR2-P2 (aa 11-19; LLVALSYTL) or AGR2-P4 (aa 127-135; RIMFVDPSL) generated potent CTLs that could lyse T2 cells pulsed with AGR2-P2 or AGR2-P4 and HLA-A0201+ AGR2-positive CRC cell lines in a strong dose-dependent and HLA-A 0201-restricted manner. In conclusion, these novel epitopes derived from AGR2 protein may be attractive candidates for DC-based immunotherapy for CRC.
ISSN:1672-7681
2042-0226