A comparative study on geometries, stabilities, and electronic properties between bimetallic AgnX(X=Au,Cu;n=1-8)and pure silver clusters
Using the meta-generalized gradient approximation (meta-GGA) exchange correlation TPSS functional, the geo-metric structures, the relative stabilities, and the electronic properties of bimetallic AgnX (X=Au, Cu; n=1-8) clusters are systematically investigated and compared with those of pure silver c...
Gespeichert in:
Veröffentlicht in: | 中国物理B:英文版 2012, Vol.21 (4), p.262-271 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using the meta-generalized gradient approximation (meta-GGA) exchange correlation TPSS functional, the geo-metric structures, the relative stabilities, and the electronic properties of bimetallic AgnX (X=Au, Cu; n=1-8) clusters are systematically investigated and compared with those of pure silver clusters. The optimized structures show that the transition point from preferentially planar to three-dimensional structure occurs at n = 6 for the AgnAu clusters, and at n = 5 for AgnCu clusters. For different-sized AgnX clusters, one X (X=Au or Cu) atom substituted Agn+l structure is a dominant growth pattern. The calculated fragmentation energies, second-order differences in energies, and the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO LUMO) energy gaps show interesting odd-even oscillation behaviours, indicating that Ag2,4,6,s and Agl,3,5,7X (X=Au, Cu) clusters keep high stabilities in comparison with their neighbouring clusters. The natural population analysis reveals that the charges transfer from the Agn host to the impurity atom except for the Ag2Cu cluster. Moreover, vertical ionization potential (VIP), vertical electronic affinity (VEA), and chemical hardness (η) are discussed and compared in depth. The same odd even oscillations are found for the VIP and η of the AgnX (X=Au, Cu; n=1-8) clusters. |
---|---|
ISSN: | 1674-1056 2058-3834 |