Morphology cluster and prediction of growth ol human brain pyramidal neurons

Predicting neuron growth is valuable to understand the morphology of neurons, thus it is helpful in the research of neuron classification. This study sought to propose a new method of predicting the growth of human neurons using 1 907 sets of data in human brain pyramidal neurons obtained from the w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:中国神经再生研究:英文版 2012, Vol.7 (1), p.36-40
1. Verfasser: Chao Yu Zengxin Han Wencong Zeng Shenquan Liu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Predicting neuron growth is valuable to understand the morphology of neurons, thus it is helpful in the research of neuron classification. This study sought to propose a new method of predicting the growth of human neurons using 1 907 sets of data in human brain pyramidal neurons obtained from the website of NeuroMorpho.Org. First, we analyzed neurons in a morphology field and used an expectation-maximization algorithm to specify the neurons into six clusters. Second, naive Bayes classifier was used to verify the accuracy of the expectation-maximization algorithm. Experiment results proved that the cluster groups here were efficient and feasible. Finally, a new method to rank the six expectation-maximization algorithm clustered classes was used in predicting the growth of human pyramidal neurons.
ISSN:1673-5374